Simulation der Neutronensternverschmelzung GW190425
Bilder von GW190425
Die Bilder zeigen eine numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte. Die beiden in der Animation gezeigten, nicht rotierenden Neutronensterne haben 1,72 und 1,63 Sonnenmassen und folgen der ALF2-Zustandsgleichung. Die verwendeten Parameter (Gesamtmasse, Massenverhältnis, Spin und Zustandsgleichungen) stimmen mit der Messung der Advanced LIGO- und Virgo-Detektoren vom 25. April 2019 überein.
Bildrechte
Numerisch-relativistische Simulation: T. Dietrich (Nikhef), W. Tichy (Florida Atlantic University) und die CoRe-collaboration Wissenschaftliche Visualisierung: T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik)
Abb. 1: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 1: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 2: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 2: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 3: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 3: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 4: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 4: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 5: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 5: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 6: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 6: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 7: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 7: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 8: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 8: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 9: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 9: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 10: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 10: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 11: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 11: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 12: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 12: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 13: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 13: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 14: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 14: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 15: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 15: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 16: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 16: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 17: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 17: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 18: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration
Abb. 18: Numerisch-relativistische Simulation der Verschmelzung zweier Neutronensterne, die zu dem am 25. April 2019 gemessenen Gravitationswellenereignis (GW190425) führte.
© T. Dietrich (Nikhef), S. Ossokine, A. Buonanno (Max-Planck-Institut für Gravitationsphysik), W. Tichy (Florida Atlantic University) und die CoRe-Kollaboration