Sommersemester 2005

13049 Physik II (mit Experimenten)

Danzmann 
EV4, Do 11 - 13, Fr 10 -12, Ort: 1101 Gr.Phys.Hs. (E114) 
Vorlesungsbeginn: 7.4.

Die Vorlesung ist die Fortsetzung des Grundkurses Physik I und wird anhand von Experimenten die Elektrodynamik behandeln. Inhalte der Vorlesung sind:

  • Elektrostatik
  • Elektrischer Strom
  • Statische Magnetfelder
  • Zeitlich veränderliche Felder
  • Elektrotechnische Anwendungen
  • Elektromagnetische Wellen

Literaturempfehlungen:
Demtröder "Experimentalphysik 2", Springer Verlag
E. M. Purcell "Berkeley Physik Kurs 2", Springer Verlag
Weitere Literatur wird in der Vorlesung bekannt gegeben.


13050 Übungen zur Physik II

Danzmann 
TU2,Mi 8-10 - 13, Ort: 3701 268 + 269, 1101 F342 Fr 8-10, Ort: 3701 269 
Beginn: 20.4.


13125 Gravitational Radiation

Schutz

Achtung Änderung, bitte weitersagen!

EV2, als Blockvorlesung am 18. bis 21. Juli, jeweils 10:30 - 12:00 und 13:00 - 14:30 (nicht am 18. nachmittags)
Ort: 3401 SR

Contents:

  1. Introduction to gravitational waves
  2. How waves propagate and interact with matter
  3. How sources generate gravitational waves
  4. Principal expected sources
  5. Detectors on the ground and in space
  6. Data analysis: finding signals in all that noise
  7. Astrophysics from gravitational waves
  8. Fundamental physics implications of gravitatational wave observations

Literature:
B. Schutz, Gravitational Wave Data Analysis. Klüver 1989
March & Lasota, Relativistic Gravitation and Gravitational Radiation. Cambridge Univ. Press 1997, pp 447-75.


13126 Nonclassical Interferometry

Schnabel 
TV2, Fr 9-11, Ort: 2705 SR209

Description: Quantum-noise of the electromagnetic field is one of the major noise sources in advanced interferometric grvitational wave detectors. Two sources of quantum noise need to be considered: Shot noise arises from uncertainty due to quantum fluctuations in the number of photons at the interferometer output. Radiation pressure noise arises from the uncertainties in the mirror positions due to quantum fluctuations of internal fields. The sum in quadrature of both contributions leads to the so-called Standard-Quantum-Limit (SQL) and has long been thought to describe a fundamental boundary for detector sensitivities. During the last decade it has been shown that quantum correlated light (nonclassical light) is able to break the SQL. The lectures will introduce proposed concepts for nonclassical interferometry, like squeezed light injection, ponderomotive squeezing and speed meters as well as first experiments.
Audience: Studierende ab dem 8. Semester; (especially recommended for Graduate Studies students).
Literature: Introduction into Quantum Optics, Non-Classical Light.

Zur Redakteursansicht