Doppelsternsystem mittels Pulsar-Gammastrahlung präzise vermessen

Max-Planck-Forscher finden Hinweise auf Aktivitätszyklen des Begleitsterns

29. Juli 2015

Pulsare sind schnell rotierende, kompakte Überreste von Explosionen massereicher Sterne. Beobachten lassen sie sich anhand der Bündel aus Radio- und Gammastrahlung, die sie wie kosmische Leuchttürme ins All senden. Forscher des Max-Planck-Instituts für Gravitationsphysik (Albert-Einstein-Institut, AEI) in Hannover haben nun ein Doppelsternsystem mit einem schnell rotierenden, sogenannten Millisekundenpulsar ganz genau vermessen. Die Wissenschaftler analysierten Archiv-Daten des Gamma-Weltraumteleskops Fermi mit neuen Methoden präziser als zuvor möglich. Dabei entdeckten sie Schwankungen in der Umlaufzeit des wechselwirkenden Doppelsternsystems, die sich durch magnetische Aktivitätszyklen des Begleitsterns erklären lassen.

Pulsare

Neutronensterne sind Exoten. Sie bestehen aus Materie, die viel dichter gepackt ist als gewöhnlich, mit einer Dichte vergleichbar der eines Atomkerns. Ein Stern von etwa der Masse unserer Sonne hätte so einen Durchmesser von rund 30 Kilometer.

Außerdem besitzen Pulsare extrem starke Magnetfelder. Entlang der Magnetfeldlinien beschleunigte, geladene Teilchen senden elektromagnetische Strahlung in verschiedenen Wellenlängenbereichen aus: Diese Strahlung ist in Richtung der Magnetfeldachse kegelartig gebündelt. Dreht sich der Neutronenstern nun um seine Rotationsachse, die relativ zur Magnetfeldachse geneigt ist – und das ist der Regelfall –, so beleuchten die Strahlungskegel wie ein Leuchtturm das Universum. Der Neutronenstern ist dann als Pulsar sichtbar. Die Pulsare rotieren im Sekunden- bis Millisekundentakt so präzise, dass sie als die zuverlässigsten Uhren überhaupt gelten.

Erstmals wurden diese kosmischen Leuchtfeuer im Jahre 1967 von Jocelyn Bell Burnell als Radiopulsare entdeckt. Inzwischen sind außerdem Röntgen- und Gammapulsare bekannt. Auch wenn sich nicht alle Pulsare in allen Frequenzbereichen beobachten lassen, gehen die Wissenschaftler davon aus, dass sie über das gesamte elektromagnetische Spektrum verteilt Energie abstrahlen.

Gamma- und Radiopulsare

Jedoch sind die Mechanismen, welche die Strahlung in den verschiedenen Frequenzbereichen erzeugen, noch nicht vollständig verstanden. Die Forscher vermuten, dass die energieärmeren Radiowellen an den Magnetfeldpolen zu einem engeren Lichtkegel gebündelt werden als die hoch energetische Gammastrahlung. Nun wird aber die meiste Strahlung entlang der Kegelhülle ausgesendet. Da die Kegel in diesem Modell je nach Art der Strahlung unterschiedlich stark aufgefächert sind, verlassen Radio- und Gammastrahlung den Pulsar in unterschiedliche Raumrichtungen. Aus diesem Grund könnte ein Pulsar für den Beobachter entweder als Gamma- oder als Radiopulsar erscheinen.

Weitere interessante Beiträge

Zur Redakteursansicht