Einstein Telescope

The Einstein Telescope (ET) is a design concept for a European third-generation gravitational-wave detector, which will be 10 times more sensitive than the current advanced instruments of the second generation.

Three detector generations

Like the first two generations of gravitational-wave detectors, the concept for the Einstein Telescope is based on the measurement of tiny changes (far less than the size of an atomic nucleus) in the lengths of two connected arms several kilometres long, caused by a passing gravitational wave. Laser beams in the arms record their periodic stretching and shrinking via brightness changes on a central photodetector.

The first generation of these interferometric detectors (GEO600, LIGO, Virgo and TAMA) successfully demonstrated the proof-of-principle and constrained the expected gravitational-wave emission from several sources. The next generation (Advanced LIGO and Advanced Virgo), which were constructed until 2015, have made the first direct detection of gravitational waves and have observed 90 signals so far. However, these detectors will not be sensitive enough for very precise astronomical studies of the gravitational-wave sources – new detectors are required.

A multi-detector

The strategy behind the Einstein Telescope project is to build an observatory that overcomes the limitations of current detector sites by hosting more than a single gravitational-wave detector. It will consist of three nested detectors, each composed of two interferometers with arms 10 kilometres long. One interferometer will detect low-frequency gravitational wave signals (2 to 40 Hz), while the other will detect the high-frequency components. The configuration is designed to allow the observatory to evolve by accommodating successive upgrades or replacement components that can take advantage of future developments in interferometry and also respond to a variety of science objectives.

Currently, possible detector sites in the border area of Belgium, Germany, and the Netherlands as well as Sardinia are being evaluated.

The role of the AEI in the Einstein Telescope project

The AEI Hannover has long been a leading institution in gravitational-wave research and is a co-initiator of the Einstein Telescope. Its research focuses on quantum-limited interferometric measurements, laser development, the development of squeezed-light sorces and the control and operation of gravitational-wave detectors.

Harald Lück is the deputy spokesperson of the Einstein Telescope Scientific Collaboration.

Current Einstein Telescope research at AEI Hannover


Berthold Leibinger Stiftung honors laser researchers from Hannover and Cardiff

First prize for high-precision laser sources in gravitational-wave astronomy, fundamental research, and more more

Improving squeezing performance in GEO600

Understanding, modelling, and mitigating noise from light scattered back into the gravitational-wave detector’s squeezed-light source more

Einstein Telescope Scientific Collaboration leadership elected

Michele Punturo (INFN) and Harald Lück (Leibniz University Hannover) to serve as coordinator and vice coordinator, respectively more

Show more
Go to Editor View