Sommersemester 2006
13049 Physik II (mit Experimenten)
Danzmann
EV4, Do 10-12, Fr 10-12, Ort: 1101 Gr.Phys.Hs. (E114)
Vorlesungsbeginn: 13.4.
Die Vorlesung ist die Fortsetzung des Grundkurses Physik I und wird anhand von Experimenten die Elektrodynamik behandeln. Inhalte der Vorlesung sind:
- Elektrostatik
- Elektrischer Strom
- Statische Magnetfelder
- Zeitlich veränderliche Felder
- Elektrotechnische Anwendungen
- Elektromagnetische Wellen
Literaturempfehlungen:
Demtröder "Experimentalphysik 2", Springer Verlag
E. M. Purcell "Berkeley Physik Kurs 2", Springer Verlag
Weitere Literatur wird in der Vorlesung bekannt gegeben.
Folien zur Vorlesung
Alle Informationen zu dieser Vorlesung sind in der E-Learnng Umgebung Stud.IP der Universität Hannover zugänglich. Hier kann man sich anmelden:
https://elearning.uni-hannover.de
3050 Übungen zur Physik II
Danzmann
TU2, Mi 8-10, Ort: 3701 268 + 269, 1101 F342
Fr 8-10, Ort: 3701 269
13124 Mini-Einführung in die Theorie der Kac-Moody-Algebren (für Physiker)
Nicolai
Blockveranstaltung, Di 6.6.06. um 10, 12 und 15 Uhr
Ort: SR 268, Appelstr. 2
13125 Gravitational Radiation
Schutz
EV2, als Blockvorlesung 3.7. 14-16, 4.7. 14-16, 5.7. 14-16, 6.7. 10-14
Ort: 3401 SR 103 und 112
An introduction to the theory of gravitational radiation and its detection, with a survey of astronomical systems that are likely to be the strongest sources of detectable radiation. Students should previously have studied the foundations of general relativity and have reached the 5th or 7th semester.
Literature:
B.F. Schutz A First Course in General Relativity (Cambridge University Press)
K.S. Thorne, Gravitational Radiation. In: S.W. Hawking and W. Israel (eds.) 300 Years of Gravitation (Cambridge University Press 1987)
13126 Nonclassical Interferometry
Schnabel
TV2, Do 14-16, Ort: 3401 SR 103
Description:Quantum-noise of the electromagnetic field is one of the major noise sources in advanced interferometric grvitational wave detectors. Two sources of quantum noise need to be considered: Shot noise arises from uncertainty due to quantum fluctuations in the number of photons at the interferometer output. Radiation pressure noise arises from the uncertainties in the mirror positions due to quantum fluctuations of internal fields. The sum in quadrature of both contributions leads to the so-called Standard-Quantum-Limit (SQL) and has long been thought to describe a fundamental boundary for detector sensitivities. During the last decade it has been shown that quantum correlated light (nonclassical light) is able to break the SQL. The lectures will introduce proposed concepts for nonclassical interferometry, like squeezed light injection, ponderomotive squeezing and speed meters as well as first experiments.
Audience: Studierende ab dem 8. Semester; (especially recommended for Graduate Studies students).
Literature: Introduction into Quantum Optics, Non-Classical Light.