Neutron star oscillations and instabilities
Neutron star oscillations: bar mode instabilities
These images show the computer simulation of a rapidly spinning neutron star that is bar-like deformed by a dynamical instability. In contrast to spherical rotating masses which have no varying quadrupole moment and therefore don't emit gravitational waves, rotating bar-like mass distributions emit gravitational radiation. This radiation is even stronger the larger the mass or the faster it is spinning. Thus a rapidly spinning bar-like deformed neutron star is a strong source of gravitational waves.
Credits
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)
Note: Publication of these images requires proper credits and written permission. Please contact aei_zib_images@aei.mpg.de in advance of publication.
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)
Fig. 1
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)
Fig. 2
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)
Fig. 3
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)
Fig. 4
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)
Fig. 5
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)
Fig. 6
© L. Baiotti (Max Planck Institute for Gravitational Physics), B. Giacomazzo (SISSA), L. Rezzolla (Max Planck Institute for Gravitational Physics & Institute for Theoretical Physics, Frankfurt)