My work focuses on modelling the dynamics of binary black holes in
the limit that the ratio of the masses is small (so called extreme
mass-ratio inspirals or EMRIs), both through analytic and numerical
means. In this limit the binary problem can be treated perturbatively
with the mass-ratio as a small parameter. The field equations can be
solved using black hole perturbation theory, and the corrections to the
dynamics take the form of an effective force on the smaller object, the
gravitational self-force.

Over the last few years, I have focused on calculating this
gravitational self-force when the primary black hole is spinning, and
explored the phenomenology of orbit resonances that occur in generic
inspirals. This work will continue at the AEI, where I will also
investigate ways of calibrating effective-one-body models using
self-force data.

__Publications__

Here are links to my publications: on Spires, on the ADS database, and on the arxiv.

I studied physics and mathematics at the University of Amsterdam between
2001 and 2006, where I wrote a BSc thesis on the formulation of Bell's
inequalities in Algebraic Quantum Field Theory under supervision of
Prof. Klaas Landsman and an MSc thesis on geometric invariants arising
from topological string theory under supervision of Prof. Robbert
Dijkgraaf. After a year as a Fulbright scholar studying pure mathematics
at the University of Oregon, I started a PhD in theoretical physics at
Utrecht University in 2007. Under the supervision of Prof. G. 't Hooft, I
studied a model for discrete gravity in 3+1 dimensions known as
'Piecewise Flat Gravity', ultimately proving it not viable.

After
obtaining my PhD, I switched my field to the study of exterme
mass-ratio inspirals using gravitational self-force, joining the group
of Leor Barack in Southampton with an NWO Rubicon grant. In 2017, I
joined the AEI as Marie Curie fellow, continuing my work on self-force.