Calibration of the Dual-Recycled GEO600

Martin Hewitson and the GEO team
AEI, Hannover
Dual-recycled GEO600

signal-recycling mirror added

North arm (600m)

East arm (600m)

North
General approach

• Undo the effects of any transfer functions from differential displacement to output voltage
 • optical transfer function
 • differential lock servo-loop

• Convert recovered differential displacement to strain
Simplified detector model

- High-power diode (Q)
- High-power diode (P)
- Quad diode (low-power)
- Split feedback Path

Differential displacement

Calibration signal

High-power diode (Q)
High-power diode (P)
calculate h(t) from here!
Low-power diode (P')
- Frequency dependent optical gain
 - different from power-recycled case (flat optical response)
 - time-varying overall gain – what about time-varying frequency response?

PR → DR
Measured optical response (S3I)

DC Gain: 5740
Pole f: 1225 Hz
Pole Q: 2.7
Zero f: 1400 Hz
Calibration Lines (S3I)

- Injected into ESD actuator using purpose built generator

G1:LSC_MID_CAL

G1:LSC_MID_EP-P_HP

Volts

Actuator

Optical

GEO meeting – March, 2004
Calibration Equation

\[d(t) = F'_\text{opt} \left\{ P_{EP}(t) \right\} + F_{FB} \left\{ P_{EP}(t) \right\} \]

High-frequency (open-loop) correction – inverse optical response

Low-frequency (closed-loop) correction – response of feedback paths

\[h(t) = \frac{d(t)}{1200} \]
System identification

- Recover parameters of optical response
- Form transfer function from calibration lines to detector output
- Fit model transfer function to measurements
- optimisation routine – hfit() - runs once per second
 - returns Pole freq, Pole Q, Zero freq, DC gain
 - gives χ^2 measure of fit (see later)
Calibration Routine

System identification

Optical response correction

Loop-gain correction

\(h(t) \) production
Analysis of S3I data

- Optical response corrected with fixed frequency dependence – good assumption?
 - later done with varying frequency response
- What does the χ^2 tell us?
- How good is the calibration?
Recovered optical parameters
Distribution of optical parameters

DC Optical Gain

- $\mu = 6033.1$
- $\sigma = 232.4$

Pole f

- $\mu = 1220.2$
- $\sigma = 14.1$

- $+1.1\%$

Pole Q

- $\mu = 2.7$
- $\sigma = 0.1$

- $+3.7\%$

Zero f

- $\mu = 1369.9$
- $\sigma = 33.1$

- $+2.4\%$
Optical response variations

Recovered responses taken every 5000 secs of the first week of S3

< +- 2°
χ^2 triggers

- nominal $\chi^2 \sim 50$
- 591 triggers > 200 in 604,800 secs
Quality channel

- Quality channel contains information about data quality and detector status in 16 bits
 - Lock indicator
 - Maintenance time
 - χ^2 threshold crossings
 - Extendable to more....
- Highest quality is 0

<table>
<thead>
<tr>
<th>BIT</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
</table>

lock status

maintenance condition

χ^2 threshold 1
χ^2 threshold 2
χ^2 threshold 3
χ^2 threshold 4

GEO meeting – March, 2004
Calibrated $h(t)$
Summary

• Good so far...
 • calibration good to ~10% across most of the detection band
 • still dominated by calibration actuator
 • high confidence in parameter recovery
 • fast processing (4x real-time on my laptop)

• Where to go from here?
 • more validation
 • freq-domain comparisons, simulations (some done)
 • on-line updating of optical correction filters using estimated parameters – tried, but not tested fully
 • Include other quadrature (Q) in calibration process