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The complete structure of N =8 supergravity is presented with an optional local SO(8)
invariance. The SO(8) gauge interactions break E- invariance, but leave the local SU(8) unaffected.
Exploiting E; x SU(8) invariance and using explicit lowest order results, we first derive the complete
action and transformation laws. Subsequently, we introduce local SO(8) invariance and prove the
consistency of the theory. Possible implications of our results are discussed.
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Bernard’s bad influence:

To establish our notation and for the purpose of convenience we list a number of

y-matrix identities, as well as some relations fg use local Lorentz
indices @, b, ... = 1, .., 4, and the Pauli metridn®® = diag (+, +, +, +).JAll our results
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FIG. 2. DR JOHN HAGELIN’S DERIVATION OF THE QUALITIES OF THE UNIFIED FIELD FROM THE LAGRANGIAN OF
N =8 SUPERGRAVITY THEORY (AS FORMULATED BY DE WIT AND NICOLAI), AN EXAMPLE OF A SUPERSYMMETRIC
UNIFIED QUANTUM FIELD THEORY.
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= The higher-dimensional solution would have been impossible without uplifts of
solutions of lower-dimensional gauged supergravity

However:

To reduce to lower-dimensional gauged
supergravity one needs to make a
consistent truncation to a greatly
reduced subset of fields and perturbations

= The lower-dimensional consistent
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sector of the essential physics
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First Compactification: Reduce on the T4

D5
%%A = Six-dimensional (1,0) supergravity
<
+ what matter multiplets?

D1 + D5 branes source generic Cupin 10 dimensions
... coherent open string excitations source B, = Tensor multiplets.
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Supersymmetric Microstructure: Momentum Excitations

Add purely left-moving momentum:
Qp ~ Np = Lojefe # 0
Right moving sector: Ramond ground state

= V3 BPS states

At vanishing string coupling, gs = 0, Cardy formula:

S = log (QUQp)) = 277«/%1)0

— 27T\/N1N5Np — 27T\/Q1Q5QP

Back-reacted geometry + imposing spherical symmetry

= Blackholewith S = 1A = 27/Q,Q5Qp

Strominger, Vafa 1996 Perfect match! Declare victory ....
At vanishing string coupling

Superstrata: \What does back-reacted microstructure become at strong coupling’

Coherent states of open strings carrying left-moving momentum
= Six-dimensional (1,0) supergravity coupled to anti-self-dual tensor multiplets.
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D5 branes wrapped onT# x S'(y)
D1 branes wrapped on S7(y)

& The maximally supersymmetric supergravity ground
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Second Compactification: Reduce on the S3
= Three-dimensional SO(4) gauged N= 4 supergravity

Which theory!? Momentum carriers: six-dimensional tensor multiplets

— Three-dimensional hypermultiplets
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The BMPYV black hole Vacuum

Following Strominger, Vafa @

Add pure momentum, Qp to
the vacuum state ...

Ignore details of how the momentum is AdS;
actually carried by supergravity fields

& Ensemble Average over details of momentum charge

Back-reacted Geometry The Black hole - BTZ geometry

Y S— \

ECE Round S3

AdS,
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Precision Holography Encode details of Momentum carriers

w | Six dimensions
Anti-self-dual tensor fields
Vacuum - ) )
Three dimensions
AdS; X S3 Hypermultiplet scalars

Back-reacted BPS Geometry + Momentum Excitations

The superstratum:
Black-hole-like throat looks like

a capped BTZ geometry

AdS,

For the simplest superstrata the
Deformed S° is handled by the
magic of consistent truncation ...

U = Three-dimensional gauged supergravity

AdS; cap

Holographic dictionary with states of the D1- D5 CFT verified to high precision

These geometries are indeed dual to some of the supersymmetric microstates
counted by Strominger and Vafa.. ..
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Microstate Geometries from Gauged Supergravity in Three Dimensions

Daniel R. Mayerson (IPhT, Saclay), Robert A. Walker (IPhT, Saclay and Stanford U., Phys. Dept.), Nicholas P. Warner (IPhT, Saclay and
Stanford U., Phys. Dept. and Southern California U.) (Apr 27, 2020)

Published in: JHEP 10 (2020) 030 - e-Print: 2004.13031 [hep-th]

pdf ¢ DOI [= cite 5) 20 citations

Determined exactly which gauged SO(4) N = 4 supergravity is
the correct one for black-hole microstructure

Included the extra anti-self-dual tensor multiplets
& extra hypermultiplets in three dimensions
= Momentum wave carriers

Uplift formulae for hypermultiplet scalars
& tensor gauge field fluxes

Vast families of superstrata can be constructed directly in six dimensions
... why do we need this (very restricted) three-dimensional formulation?



Finding Non-Extremal Microstrata

Mayerson, Walker and Warner, arXiv:2004.13031
Ganchev, Houppe and Warner, arXiv:2107.09677
Ganchev, Houppe, Giusto and Russo, arXiv:2112.03287

Ganchev, Houppe, Giusto, Russo and Warner, to appear
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Huge Advantages of Gauged Supergravity in Three Dimensions

* We have to solve the equations of motion numerically/perturbatively:
Much easier in (ty,r) than in (ty,r,6,0,d) all together

* Microstrata will decay into graviton multiplet excitations

% 2, AdS;
4
R4
! "
!
I

AdS, x S

D1

Using AdS3 boundary conditions effectively
puts it in 2 box and stabilizes against decay

¢ I

D5

AdS3 microstrata can be made time-independent:
Non-extremal microstates in equilibrium with their “Hawking radiation™
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The Th ree-Dimensional Action Mayerson, Walker and Warner, 2004.13031

Scalar fields, mag (inverse mAB) and y4, coupled to gravity and SO(4) KK

Maxwell fields, AAB = - ABA from the S3fibration

L = ;R — g Te[(Dym)m™" (D*m)m™" ] — g m™7 (Duxa) (D'xp) — V

1
4 8

1 AB puvCD 1 Uvp AB 1 BA 4 AB BC CA
—smacmpp F,,~ F — 590€ (Au 0,A, = 9o AT AT A, )

1 _puvp AB

Yiap = xBDuxa — xaDuxs

Vo= 1g2 det (m*P) [2(1 — L (xaxa))”

+ (mAB (mAB T %XAXB) - %mAAmBB)}
Hypermultiplet scalars: y,

Maximally supersymmetric vacuum: y4, = 0, m, = 043

Simplify the problem even further using the “Q-ball/Coiffuring trick”

Only scalars are time and angle dependent: e.g. y;+ixy,=V(r)ei(@t+ny)

Phases cancel in energy-momentum tensor and in currents
= Metric and Maxwell fields can be restricted to functions of r alone

— Many new non-extremal/non-BPS solutions
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The Simplest Fam||y of Solutions Ganchev, Houppe and Warner, 2107.09677
Six-dimensions

* The hypermultiplets: y;+iy,= v(§) ei(@t+nu) Tensor Gauge Fields
2 X O2x
* The scalar shape modes: mu5 = (6 02/22 2 62#22]1;2)
(Mg — M) + 2iMyy = e?ro 2w Hn) \ | S$3 Shape
* Maxwell fields
~ 1
A = —[D(¢)d Uy (&)d
90[ 1(§)dr + Vi(§) TP] Fibering of the S3 over
~ 1 the space-time
At = - [Du()dr + Va(E)dy] P
0

* The Space-Time
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The Ansatz: Eleven functions of one variable,&:

V:HO,HT)IJZ) QO:Q1:k) ¢1:w1)q)2)1p2
\—— " ~————

Scalars 3D Geometry  Electromagnetic KK Fields



Solve: Perturbation theory and Numerics

Comparison of numerical and perturbation theory results at a=1/4, =0, wy=2

v 10 11
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o1l 00002, 02 D4 06 08 /10 o005 6-
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| ‘ ‘ - -0.0006 | ~0.0010| 4
. 4 . . 1,
0 06 O 0 o008 . 2.
~0.1} g ~0.0015
1
0.500000 . v
0.500000 | 2107
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0.9990| 1.0020 |
' 1.0015 |
0.9985 | 1.0010 |
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Important results

* Non-extremal microstate geometries exist as stable

gravitational solitons ... and examples can be constructed pP
* Precision holography maps microstrata onto non-BPS | , u
I i - - e Z |
combinations of left + right-moving momentum states iR
Il A
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* Normal modes of oscillation of microstrata have
frequencies that depend non-linearly on the amplitudes
of the states

Wnon—BPS = WBPS —+ 0w, bw ~ —(Amplitude)® +
Transition to chaotic spectra ...

* Frequencies of modes of oscillation of microstrata decrease monotonically
below supersymmetric values: Binding energy increases as supersymmetry
breaking becomes larger ...



Next Steps ...

* More complicated multi-mode states: transition to chaos in detail



Next Steps ...

* More complicated multi-mode states: transition to chaos in detail

* Couple to flat space ... < Flat Space Flat Space —>

AdS, x S®

BTZ x S8 =
AdS,xS'xS® [




Next Steps ...

* More complicated multi-mode states: transition to chaos in detail

* Couple to flat space ... < Flat Space Flat Space —>

AdS, x S®

BTZ x S8 =
AdS,xS'xS® [

and compute Decay/“Hawking radiation” as a tunneling process ...
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* Non-extremal, non-supersymmetric microstate D5
geometries exist, and can be constructed: microstrata

and have known CFT duals: Non-extremal Black-hole microstructure

* Non-BPS excitations exhibit the physics one expects: Binding energies,
chaotic spectra ...

* The construction of microstrata in AdS naturally leads to time independent
solutions ...

broviding a route to computing the decay as “Hawking Radiation” into flat space
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