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Intertwining with Hermann
Hermann and I have collaborated directly on two papers, written
together with Guillaume Bossard:

• “Universal BPS structure of stationary supergravity
solutions”, arXiv 0902.4438

• “Gravitational multi-NUT solitons, Komar masses and
charges”, arXiv 0809.5218

However, throughout my career, I have often found that my work
was intertwining in one way or another with topics on which
Hermann had developed an original and sharp understanding.

For this talk, some of these points are related to the topic of
consistent Kaluza-Klein truncations, in which Hermann has been a
pioneer:

• B. de Wit and H. Nicolai “The Consistency of the S**7
Truncation in D=11 Supergravity”, Nucl.Phys.B 281 (1987)
211.

and a number of further deep papers on this intricate subject.
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I have visited the AEI on many occasions, in particular for one long
visit thanks to an Alexander von Humboldt research prize, with
Hermann as my host – which was a very fruitful and enjoyable
period in my career. I am greatly honored to participate in this
celebration of Hermann’s 70th birthday.

Happy Birthday, Hermann!
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Some taxonomy
Generalized membrane solutions of higher dimensional gravitational
theories, or “branes” are characteristic solutions of supergravity
theories. A taxonomy arises of different effective-theory behaviors
that can occur in fluctuations away from such static brane
“vacua”:

1) Consistent-truncation Kaluza-Klein reductions using the static
brane as a “skeleton”. The resulting lower-dimensional
worldvolume theory is a supergravity theory with the same
degree of supersymmetry as that preserved by the brane
skeleton “vacuum”. All fields share the underlying brane
skeleton extension into the transverse higher dimensions.

2) Full localization of gravitational phenomena near the
underlying brane, then falling off towards transverse infinity.
This generates a massless effective lower-dimensional theory,
but not via a technically consistent reduction.

The distinction between these two types depends on the choice of
boundary conditions for fluctuations near the brane worldvolume.
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Type 1: Ricci-flat branes and supergravity extensions
For every flat-worldvolume brane solution of a higher-dimensional
supergravity it is possible to replace the flat worldvolume metric by
a Ricci-flat metric. Brecher & Perry hep-th/9908018

Such constructions have been used to put black holes into
dimensionally-reduced worldvolume theories. Chamblin, Hawking
and Reall called such solutions “black strings” starting from 5D.
Chamblin, Hawking & Reall, hep-th/9909205

If there is surviving supersymmetry in the flat-worldvolume brane
solution, Lü and Pope showed in a Randall-Sundrum context that
one can make a consistent embedding of a corresponding
supergravity theory into the asymptotic near-horizon geometry of
the brane solution (e.g. AdS5 × S5). Lü & Pope, hep-th/0008050

Such a near-horizon embedding can also be extended to a
consistent embedding of the lower dimensional supergravity upon a
full brane solution, serving as a “skeleton” in the higher
dimensional theory. R. Leung & KSS, arXiv/2205.13551
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To see how one can embed gravity phenomena on the worldvolume
of a p brane solution, consider first a model system in D spacetime
dimensions consisting of a metric, a (p + 1) form gauge field and a
scalar,

Imodel =

∫
MD

(
R ⋆ 1− 1

2
dϕ ∧ ⋆dϕ− 1

2
eaϕF[p+2] ∧ ⋆F[p+2]

)
Consider a warped-metric brane-solution ansatz

ds2d = e2A(y)gµν(x)dx
µdxν + e2B(y)g̃ij(y)dy

idy j .

For this, one obtains the D dimensional Ricci tensor components

Rµν = Rµν − e2(A−B)
(
∇̃2A+ g̃ ij∂iA

(
de∂jA+ dm∂jB

))
gµν ,

Rij = R̃ij − de∇̃i∇̃jA− dm∇̃i∇̃jB + dm∂iB∂jB − de∂iA∂jA

+ 2de∂(iA∂j)B −
(
∇̃2B + g̃kl∂kB

(
de∂lA+ dm∂lB

))
g̃ij .

where Rµν and R̃ij are the Ricci tensors of gµν and g̃ij respectively,

∇̃i is the covariant derivative with respect to g̃ij , and de = p + 1 ,
dm = d − p − 3.
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The “skeleton” brane solution will have gµν(x) = ηµν , but it is
clear that any Ricci-flat worldvolume metric gµν(x) and Ricci-flat
transverse metric g̃ij will also yield a solution to the model system
field equations, provided the A and B warp factors retain the same
structure as in the vacuum solution.

The generalization incorporating both worldvolume gµν(x) and
transverse g̃ij Ricci-flat metrics may be called “doubly Ricci-flat”.
In the following we concentrate on the Minkowski-signature gµν(x)
Ricci-flat worldvolume generalization and the extension of it to
worldvolume supergravity.
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Worldvolume supergravities

Provided the vacuum brane solution with gµν(x) = ηµν preserves
some degree of unbroken supersymmetry, the worldvolume
Ricci-flat pure gravity can be generalized further to an arbitrary
solution of a worldvolume supergravity theory with the vacuum’s
degree of supersymmetry. This creates a type of Kaluza-Klein
consistent truncation ansatz for embedding lower-dimensional (in
the model system example, d = de = (p + 1) dimensional)
supergravity into the original D dimensional theory.

The key to constructing this reduction ansatz is to exploit the
interpolating soliton structure of supersymmetric brane solutions,
interpolating between flat space at infinity and another solution in
the asymptotic horizon/brane worldvolume geometry.
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A step along the way towards a consistent brane-skeleton ansatz
was made by Lü and Pope who constructed an N = 2, d = 5
system of Randall-Sundrum type within the S5 reduced geometry
of Type IIB supergravity, using known techniques for Kaluza-Klein
reductions on spheres. Lü & Pope, hep-th/0008050

Since that system’s AdS5 × S5 vacuum solution is also the
near-horizon geometry of the 1

2 BPS Type IIB supergravity D3
brane, this motivates a KK ansatz for extending the pure gravity
Ricci-flat solution to a general solution of a corresponding 16
supercharge (i.e. N = 4 in d = 4) supergravity.

Careful study of the AdS5 × S5 reduction ansatz as well as the
requirements for embedding in the flat-space limit at infinity
motivate an ansatz for embedding d = 4, N = 4 supergravity into
a KK ansatz with the D3 brane as the skeleton background.
R. Leung & KSS, arXiv/2205.13551
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Here is the full D3 braneworld ansatz that works, producing the
bosonic sector of d = 4, N = 4 supergravity, where the D = 10

Type IIB complex scalar is τ̂ = Ĉ0 + ie−Φ̂ and the coordinates are
split into xµ on the d = 4 worldvolume and yΛ, Λ = 1, . . . , 6 in the
six transverse dimensions:

dŝ2 = H−1/2gµν(x)dx
µdxν + H1/2dyΛdyΛ

Φ̂ = ϕ(x) , Ĉ0 = −χ(x)

Ĥ(3) =
1√
2
FΛ
(2) ∧ dyΛ , F̂(3) = − 1√

2
e−ϕ∗4FΛ

(2) ∧ dyΛ

F̂(5) = H−2 vol4 ∧dH − ∗6dH , H = 1 +
4πN

r4
.

where FΛ
(2) is a two-form on the d = 4 subspace corresponding to

the field strengths of the N = 4 theory, ∗4 is the Hodge dual
computed with respect to the four-dimensional metric gµν , vol4 is
the volume form associated with gµν , and ∗6 is the Hodge dual
computed with respect to the flat metric δΛΣ on the transverse R6.
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Salam-Sezgin theory and its two taxonomies

Abdus Salam and Ergin Sezgin constructed in 1984 a version of 6D
minimal (chiral, i.e. (1,0)) supergravity coupled to a 6D 2-form
tensor multiplet and a 6D super-Maxwell multiplet which gauges
the U(1) R-symmetry of the theory. Phys.Lett. B147 (1984) 47 This
Einstein-tensor-Maxwell system has the bosonic Lagrangian

LSS = 1
2R − 1

4g2 e
ϕ̄FµνF

µν − 1
6e

−2ϕ̄GµνρG
µνρ − 1

2∂µϕ̄∂
µϕ̄− g2e−ϕ̄

Gµνρ = 3∂[µBνρ] + 3F[µνAρ]

Note the positive potential term for the scalar field ϕ̄. This is a key
feature of R-symmetry-gauged models generalising the
Salam-Sezgin model, leading to models with noncompact
symmetries. For example, upon coupling to yet more vector
multiplets, the sigma-model target space can have a structure
SO(p, q)/(SO(p)× SO(q)). Bergshoeff,Jong&Sezgin (2005); Pugh,Sezgin&KSS (2010)
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The Salam-Sezgin theory does not admit a maximally symmetric
6D solution, but it does admit a (Minkowski)4 × S2 “vacuum”
solution with the flux for a U(1) monopole turned on in the S2

directions

ds26 = dxµdxνηµν +
1

4g2
(dθ2 + sin2 θdφ2) ,

A(1) = − 1√
2g

cos θ dφ , G(3) = 0 , ϕ̄ = 0 .

Within the D = 10 type IIA supergravity theory (or equivalently
type IIB, after a T-duality transformation), the Salam-Sezgin
vacuum is a BPS solution preserving 8 unbroken supercharges.
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Lifting the Salam-Sezgin vacuum back to D = 10
In the Einstein frame, the 6D SS vacuum is a 10D nonsingular type
IIA solution (where µ = 0, 1, 2, 3 correspond to the 4D subspace).
This solution can be written
Cvetič, Gibbons & Pope, Nucl. Phys. B677 (2004) 164; Crampton, Pope & KSS, 1408.7072

dŝ210 = H
− 1

4
SS (dxµdxµ + dy2 + 1

4g2 [dψ + sech 2ρ (dχ+ cos θ dφ)]2) + H
3
4
SS ds̄

2
4

eϕ̂ = H
1
2
SS , Â2 =

1
4g2

[
dχ+ sech 2ρ dψ

]
∧ (dχ+ cos θ dφ)

where

ds̄24 =
(
cosh 2ρdρ2 + 1

4 cosh 2ρ(dθ
2 + sin θdφ2)

+1
4 sinh 2ρ tanh 2ρ(dχ+ cos θdφ)2

)
HSS = sech 2ρ .

The ds̄24 noncompact part of the transverse space metric is a form
of the 4-dimensional Eguchi-Hanson metric. The coordinates y
and ψ correspond to S1 circles.
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N = 2 supergravity on the Salam-Sezgin skeleton

As for the D3 brane, one can effect a consistent truncation of the
D = 10 type IIB theory (T-dual to IIA) to a worldvolume
supergravity theory with 8 supercharges (i.e. N=2 in D = 4):

dŝ2 = H−1/2gµνdx
µdxν + H1/2(ds2EH + dzdz) , Φ̂ = 0 , Ĉ0 = 0 ,

Ĝ(3) = F(2) ∧ dz +
1

2
(F(2) + i∗4F(2)) ∧ dz ,

F̂(5) = H−2 vol4 ∧dH − i

2
∗EHdH ∧ dz ∧ dz .

The success of this consistent braneworld gravity truncation, as for
the D3 braneworld, suggests that such consistent truncations may
be a general feature of supersymmetric braneworlds. So far, this is
known from a proliferating set of examples. Obtaining a general
proof remains an open problem.
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Solutions within and without a consistently truncated
theory

The consistent truncations to braneworld supergravities based on
an original brane “skeleton” allow for arbitrary solutions of the
truncated theory to be realised equally as exact solutions of the
parent higher-dimensional theory. Depending on the particulars of
a given case, one can have supersymmetric or non-supersymmetric
black holes, branes within the truncated braneworld, or any
solution of the truncated theory.

But this works only for solutions purely within the truncated
theory. As soon as one tries to couple to matter sources external
to the truncated theory, one runs into the problem of a vanishing
Newton constant identified by Hull and Warner for reductions on
noncompact spaces. Hull & Warner, Class. Quant. Grav. 5 (1988) 1517 . Purely within
the truncated theory, this problem does not occur because pure
supergravities, like general relativity itself, possess a “trombone”
scaling symmetry which makes Newton’s constant irrelevant (until
one couples to external sources, that is).
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The other taxonomy: Salam-Sezgin genuinely concentrated
braneworld gravity

An approach to obtaining a genuine concentration of gravity on a
braneworld subspace is to look for a normalizable transverse-space
wavefunction ξ(ρ) for hµν(x , ρ) = hµν(x)ξ(ρ).
Crampton, Pope & KSS, 1408.7072

General study of the fluctuation spectra about brane solutions
shows that the mass spectrum of the spin-two fluctuations about a
brane background is given by the spectrum of the scalar Laplacian
in the transverse embedding space of the brane.
Csáki, Erlich, Hollowood & Shirman, Nucl.Phys. B581 (2000) 309; Bachas & Estes, JHEP 1106 (2011) 005

(10)F =
1√

− det g(10)
∂M

(√
− det g(10)g

MN
(10)∂NF

)
= H

1
4
SS( (4) + g2△θ,ϕ,y ,ψ,χ + g2△)

HSS = (cosh 2ρ)−1 warp factor; △ =
∂2

∂ρ2
+

2

tanh(2ρ)

∂

∂ρ
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The directions θ, ϕ, y , ψ & χ are all compact, and one can employ
ordinary Kaluza-Klein methods for reduction on them, truncating
to the invariant sector for these coordinates, but still allowing
dependence on the noncompact coordinate ρ.

To handle the noncompact direction ρ, one needs to expand all
fields in eigenmodes of △:

ϕ(xµ, ρ) =
∑
i

ϕωi (x
µ)ξωi (ρ) +

∫ ∞

Λ
dω ϕω(x

µ)ξω(ρ)

where the ϕωi are discrete eigenmodes and the ϕω are continuous
Kaluza-Klein eigenmodes. Their eigenvalues give Kaluza-Klein
masses mω = gω in 4D from solutions to the wave equation

(10)ϕω = 0 using △θ,ϕ,y ,ψ,χϕω = 0

△ξω = −ω2ξω

(4)ϕω = (g2ω2)ϕω .
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The Schrödinger equation for H(2,2) eigenfunctions

One can rewrite the △ eigenvalue problem in terms of a
Schrödinger equation by making the substitution

Ψω =
√

sinh(2ρ)ξω

after which the eigenfunction equation takes the Schrödinger
equation form

−d2Ψω

dρ2
+ V (ρ)Ψω = ω2Ψω

where the potential is

V (ρ) = 2− 1

tanh2(2ρ)
.
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The SS Schrödinger equation potential V (ρ) asymptotes to the
value 1 for large ρ. In this limit, the Schrödinger equation becomes

d2Ψω

dρ2
+ (ω2 − 1)Ψω = 0

giving “scattering-state” solutions for ω2 > 1:

Ψω(ρ) ∼
(
Aωe

i
√
ω2−1ρ + Bωe

−i
√
ω2−1ρ

)
for large ρ

while for ω2 < 1, one can have L2 normalizable bound states.
Recalling the ρ dependence of the measure√

−g(10) ∼ (cosh(2ρ))
1
4 sinh(2ρ), one finds for large ρ∫ ∞

ρ1≫1
|Ψω(ρ)|2dρ <∞ ⇒ Ψω ∼ Bωe

−
√
1−ω2ρ for ω2 < 1 .

So for ω2 < 1 we can have candidate bound states, then a mass
gap up to the edge of the scattering states’ continuum spectrum.
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The zero-mode bound state and massless 4D gravitons

The 1-D Schrödinger system with the V (ρ) = 2− coth2(2ρ)
potential belongs to a special class of Pöschl-Teller integrable
systems. Study of this system, and in particular of its
self-adjointness properties, shows that it has a unique bound state
separated by a mass gap before the onset of a continuum of
delta-function-normalizable scattering states.

Happily, for ω = 0 the Schrödinger equation can be solved exactly.
The normalised result is

Ψ0(ρ) =
√
sinh(2ρ)ξ0(ρ) =

2
√
3

π

√
sinh(2ρ) log(tanh ρ) .

Metric excitations hµν(x)ξ0(ρ) around the 10D lifted SS
background correspond, at the linearised level, to massless 4D
gravitons on the 4D worldvolume subspacetime.
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Near-field versus far-field behaviour

The gravity fluctuations with normalizable transverse wavefunction
ξ0 successfully concentrate massless gravity near the Salam-Sezgin
braneworld surface. They interact with general sources localized on
and near the braneworld in a hybrid fashion. For example, the
near-field behaviour near a mass point approximates to Newtonian
behaviour in the higher-dimensional theory, but the far-field
behaviour asymptotes to Newtonian behaviour in the worldvolume
dimension. This behaviour is seen in the gravitational Green
function

G (0, r ; ρ, η) = − κ̂
2gM

4πr
ξ0(ρ)ξ0(η)−

∫ ∞

1

κ̂2gM exp(−gωr)

4πr
ξω(ρ)ξω(η)dω
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Near-field behaviour:

G (r , ρ) = − κ̂2g4M

2π (g2r2 + ρ2)
3
2

+O
(

1

R2

)
,

where R2 = g2r2 + ρ2. This R dependence corresponds to D = 6,
in a presentation where the theory is reduced on the naturally
compact directions θ, ϕ, y ,& ψ. Note that the Eguchi-Hanson
metric is a metric on the tangent bundle of S2, and as one
approaches the ρ→ 0 EH “nose”, the SS vacuum solution has an
asymptotic R2 × {compact} structure, with the ρ and χ
coordinates in the R2 so the higher-dimensional structure naturally
corresponds to (D = 6)× {compact} in such a presentation.

Far-field behaviour, on the other hand:

G (0, r ; ρ, η) = − κ̂
2gM

4πr
ξ0(ρ)ξ0(η) +O (exp(−gr)) ,

with the characteristic 1/r worldvolume d = 4 Newtonian
structure.
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Other gravity-concentrating systems
Analysis of the Sturm-Liouville systems corresponding to
gravitational perturbations around a variety of braneworld vacuua
yields a number of other systems where gravitational fluctuations
can be concentrated or “captured” near the braneworld.
Leung&KSS, in preparation

• Randall-Sundrum

• D3-branes on a resolved conifold over S5/Z3

• D3-branes on resolved conifolds over Y p,q

• D3-branes on a resolved cone over T 1,1/Z2

Examples where gravity is not concentrated near the braneworld
are
▶ The simple D3 brane
▶ NS5-branes on Taub-NUT

Aside from the Randall-Sundrum case, the above
gravity-concentrating cases have an asymptotic R2 × {compact}
structure as one approaches the braneworld, and this gives rise to a
logarithmic behaviour of the transverse wavefunction.
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Overview

• Supersymmetric brane solutions give rise to type of
braneworld consistent-truncation Kaluza-Klein reduction with
a fully interacting braneworld supergravity possessing the
same supersymmetry as that of the “vacuum” brane, which
serves as a “skeleton” for the KK ansatz.

• Alternately, obtaining fully localizable lower-dimensional
gravitational behaviour requires a normalisable transverse
wavefunction zero-mode like ξ0(ρ). Choosing a transverse
zero-mode like ξ0(ρ) requires a modified choice of near-brane
boundary conditions.

• Upon implementing such modified transverse boundary
conditions near the worldvolume, one can achieve
lower-dimensional far-field (e.g. 1/r for d = 4) gravitational
behaviour, while preserving higher-dimensional near-field
behaviour (e.g. 1/R3 for D = 6) as one gets close to a
point-mass source.
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