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An important question for black hole solutions in theories of gravity or supergravity concerns
their stability under the influence of small perturbations. This has been very extensively studied
in four dimensions, and also in higher dimensions. Here, we discuss an approach that was de-
veloped first for the four-dimensional Kerr black hole by Bernard Whiting in 1989. This started
from the Teukolsky equation that gives a gauge-invariant description of the gravitational per-
turbations around the Kerr background, separating variables, and then studying the separated
modes in order to establish that no exponentially growing perturbations could arise. Whiting’s
technique involved finding a transformation that mapped the difficult problem of studying modes
in a spacetime with an ergo-region and its associated super-radiant phenomena into a simpler
problem in a geometry with no ergo-region. This can in fact be studied already for the simpler
case of a massless Klein-Gordon field. Here, we examine the analogous problem in a higher di-
mension, for the five-dimensional Myers-Perry black hole, and the charged rotating black holes
of five-dimensional supergravity.



Mode Stability for the Kerr Black Hole

• Especially since it has become clear that rotating black holes are ubiquitous throughout
the universe, the question of whether or not they are stable has become one of consid-
erable importance. One approach to investigating this question for the Kerr black hole
was developed by Bernard Whiting in the late 1980s. The starting point was the Teukol-
sky equation, which provides a gauge-invariant way of analysing small fluctuations of the
spacetime geometry around the Kerr background:{
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where (t, r, θ, φ) are the usual Kerr coordinates, M is the mass, a is the rotation parameter,
and ∆ = r2−2Mr+a2 is the function in the Kerr metric that vanishes on the horizon. When
s = ±2, Ψ represents the gauge-invariant Newman-Penrose quantities that characterise
the fluctuations of the geometry around the Kerr background. If s = 0, we have the
massless Klein-Gordon equation in the Kerr background, while for s = ±1 we have the
Maxwell equations. For s = ±1

2 and s = ±3
2 we have the squares of the massless Dirac

and Rarita-Schwinger equations, respectively.

• Although the s = ±2 case is the one of principal interest for studying black hole stability,
many of the relevant features are present already in the s = 0 case. In higher dimen-
sions, where no analogue of the Teukolsky analysis of gauge-invariant gravitational per-
turbations is known, we can again gain insights by looking at the massless Klein-Gordon
equation.



Mode Stability for the Kerr Black Hole

• If one sets a = 0 in Kerr, giving Schwarzschild, one can straightforwardly establish Klein-
Gordon mode stability by constructing the conserved energy functional for eqn (1) with
s = 0. In this case the Killing vector ∂t is timelike everywhere outside the horizon, and
from this one can prove positivity of the energy and hence mode stability.

• In the Kerr case, however, there is a term( 1
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∣∣∣∣2
in the energy functional that is negative within the ergosphere r = M +

√
M2 − a2 cos2 θ

outside the horizon at r+ = M +
√

M2 − a2, and the previous simple proof of mode stability
will hence fail.

• Whiting overcame this problem by finding (how?) a rather subtle integral transformation of
the radial functions in the separated wave equation. By then “unseparating” the variables
again, after the transformation, a four-dimensional wave equation in an auxiliary metric is
obtained. The remarkable feature of this auxiliary metric is that ∂t is timelike everywhere
outside r = r+, meaning that there is no ergoregion and hence one has a positive energy
functional that allows a simple proof of mode stability for the transformed modes.

• The mode stability proof is then completed by establishing a one-to-one relation between
putative unstable modes in the original Klein-Gordon equation and in the transformed
wave equation.

• Whiting’s proof for the mode stability of the s = ±2 Teukolsky equation proceeds almost
identically.

• In this talk, we shall outline an analogous mode-stability proof for the massless Klein-
Gordon field in five-dimensional rotating black holes in gravity and supergravity.



Five-Dimensional Myers-Perry Black Hole

• The higher-dimensional analogues of the Kerr black hole were constructed by Meyers and
Perry. In five dimensions, it is given by
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∆
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r2 − 2M , ρ2 = r2 + a2 cos2 θ + b2 sin2 θ .

Here a and b are the two independent rotation parameters, with φ and ψ being the two
associated azimuthal angles (each with period 2π). The latitude coordinate θ ranges over
0 ≤ θ ≤ 1

2π. The outer horizon is at the largest root of ∆ = 0.

• Defining dr∗ = (r2 + a2)(r2 + b2)dr/(r2 ∆), and advanced coordinates (v, φ+, ψ+) by

dv = dt + dr∗ , dφ+ = dφ +
a (r2 + b2) dr

r2 ∆
, dψ+ = dψ +
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r2 ∆

, gives
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+
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+ .

It is regular on the future horizon. Similarly, retarded coordinates with du = dt − dr∗ give
metric regular at future null infinity.



Separation of Klein-Gordon Equation

• Defining new radial and latitude coordinates x and y by

r2 = 2Mε+ ε− x + 1
2 M(ε+ − ε−)2 , y = cos2 θ , ε2

± = 1 −
(a ± b)2

2M
(inner horizon at x = 0, outer horizon at x = 1), the Klein-Gordon equation separates by
writing
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where (κ,Λ, β, γ, κ̂, Λ̂, β̂, γ̂) are certain constants depending on the black hole parame-
ters (M, a, b), on the three separation constants (ω,m, n), and on the fourth separation
constant σ (entering in Λ = σ + · · · and Λ̂ = σ + · · · ).

• The differential equations arising here are of the form of confluent Heun equations. It is
difficult to establish results about mode stability by means of a direct approach. Instead,
we follow a similar strategy to that employed by Whiting for the proof of Kerr mode stability.

• First, we discuss what mode stability actually means:



Mode Stability

• The equation, in this case the Klein-Gordon equation in the five-dimensional Myers-Perry
black hole background, is said to exhibit mode stability if it is the case that every mode of
the separated solutions that obeys appropriate spatial fall-off conditions has the property
that it decays at large times. In other words, small disturbances die off, rather than grow,
as t goes to infinity.

• In the present case, the spatial region of interest is the region between the outer future
horizon H+ (at x = 1) and future null infinity I + (at x = ∞). We are thus concerned with
modes that are:

1) Ingoing at H+, so ∼ e−iω(t+r∗) near x = 1;
2) Outgoing at I +, so ∼ e−iω(t−r∗) near x = ∞;
3) The frequency ω should be such that Im(ω) ≤ 0.

• Conditions (1) and (2) ensure that there is nothing entering the region 1 ≤ x ≤ ∞ from
either of the boundariesH+ or I +. Condition (3) is the requirement that the mode should
not grow exponentially at large t.

• In fact our analysis is concerned entirely with the case where Im(ω) is non-zero. The
standard modes are of this kind; they are the so-called quasi-normal modes, and they
have Im(ω) < 0. Our task, in fact, is to show that there are no modes obeying conditions
(1) and (2) with Im(ω) > 0.

• A more challenging task would be to establish mode stability also on the real axis, i.e.
allowing for the possibility that Im(ω) = 0. The analysis would be more delicate here; for
standard quasi-normal modes the exponential die-off makes it much simpler to deal with
the boundary conditions.



Showing Mode Stability

• A strategy that one could try is to construct a conserved energy functional for the Klein-
Gordon field by calculating its energy-momentum tensor T µν and hence the conserved
current Jµ = T µν Kν where K = ∂t, and hence the conserved energy E =

∫ √
−g J0 d4x.

• If the energy functional were positive definite it would bound |∂tΨ|
2, hence showing there

could not exist any mode that increased exponentially in time. Unfortunately, because of
the existence of an ergoregion outside the horizon (where ∂t is not timelike), the energy
functional is not positive definite, and one cannot get such a bound, at least directly.

• After some experimentation, it turns out to be useful to make an integral transform of the
radial wave function X(x), introducing at the same time a new radial coordinate z, such
that the new radial wave function is h(z) given by

h(z) = e−α̃z eν̃/z z1+γ̃

∫ ∞
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2−γ X(x) dx ,

where ν̃ = −κ/(2α̃), γ̃ = −β − γ, and α̃ = i
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• The new radial variable z ranges from 0 ≤ z ≤ ∞ as the original variable x ranges from
x = ∞ (near I +) to x = 1 (near H+, the future horizon). After some analysis one finds

Near H+, x = 1, z = ∞: X(x) ∼ (x − 1)
1
2−γ, h(z) ∼ eα̃z z−κ̃

Near I +, x = ∞, z = 0: X(x) ∼ x
1
4 e2i

√
2κ x, h(z) ∼ eν̃/z z1+γ̃



Unseparation of Variables

• As a check, we see that a putative unstable mode with Im(ω) > 0 implies Re(α̃) < 0 and
so indeed h(z) will go to zero on H+. We also have ν̃ = i

√
M ε+ω/(2

√
2), so Re(ν̃) < 0

for an unstable mode, and therefore h(z) goes to zero on I +.

• We have thus established that if an unstable mode exists, the associated transformed
radial wavefunction h(z) will satisfy appropriate fall-off conditions on H+ and I +.

• We now perform an “unseparation of variables,” by defining wavefunctions

Φ(t, z, y, φ, ψ) =
1

z
√

y(1 − y)
h(z) Y(y) e−iωt+i mφ+i nψ ,

and derive the wave equation that Φ(t, z, y, φ, ψ) satisfies, given the known ODEs for h(z)
and Y(y). This can be interpreted as a massless Klein-Gordon equation

∂µ(
√
−ĝ ĝµν ∂νΦ) = 0

in the background of a certain auxiliary metric ĝµν.

• Calculating the energy-momentum tensor for Φ, and hence the conserved current Jµ =

T µν Kν, we find the conserved energy E =
∫ √
−ĝ J0 d4x, where√
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}
,

where P is a function of z and y that is manifestly positive in the whole integration region.
Since every term is integrable for any putative unstable mode, and each contribution to
E is non-negative, it follows that the integral of the P |∂tΦ|

2 term is bounded from above
by the conserved energy E. Therefore Φ cannot grow exponentially in time, and so there
cannot in fact exist any exponentially unstable modes.

• The absence of an ergoregion in the metric ĝµν is crucial in this proof.



The Transformed Metric

• The transformed metric dŝ2 takes the form, up to an unimportant constant factor, of

dŝ2 = (1 + z)−10/3 ds̃2 ,

where

ds̃2 = −
(
2z dt + (a + b)(ydφ + (1 − y)dψ) + (a − b)[(1 − y)dφ − ydψ]z2

)2

+2M(1 + z)4
[dz2

4z2 +
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4y(1 − y)
+ (1 − y)dφ2 + ydψ2

]
.

• This is quite analogous to the transformation of the four-dimensional Kerr metric that was
found by Whiting. (His was a little bit different because he made a differential transforma-
tion of the separated angular equation too, that was needed for the higher-spin Teukolsky
equations but that could have been omitted for s = 0.)

• In both four dimensions and in our present five-dimensional case, the key feature is that
the original wave equation in the original metric is transformed (with a 1-1 mapping of
modes) to the wave equation in the hatted metric. And furthermore that the hatted metric
has no ergoregion, so in the transformed theory the proof of the absence of unstable
modes is elementary, as we saw in the previous slide.



Mode Stability for Five-Dimensional Supergravity Black Holes

• The most general charged analogues of the five-dimensional Myers-Perry black hole arise
in maximal N = 8 supergravity; with 3 electric charges. The solutions can be constructed
by employing the S L(3,R) global symmetry of the theory reduced to three dimensions,
”boosting” from the Myers-Perry black hole as a seed solution. The metric is given by

ds2 = (H1H2H3)1/3 (x̃ + ỹ)
(
− Φ(dt +A)2 + ds2

4

)
,

ds2
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X = (x̃ + a2)(x̃ + b2) − 2M x̃ , Y = −(a2 − ỹ)(b2 − ỹ) ,
G = (x̃ + ỹ)(x̃ + ỹ − 2M) , U = ỹ X − x̃ Y , Z = ab (X + Y) ,

A =
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[(a2 + b2 − ỹ)dσ − abdχ] −

2Mπs

x̃ + ỹ
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i
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where πc = c1c2c3, πs = s1s2s3, and si = sinh δi ci = cosh δi, where δi are the three boost
parameters. x̃, ỹ, σ and χ are related to the previous Myers-Perry coordinates by

x̃ = 2Mε+ε− x + 1
2 M(ε+ − ε−)2 , ỹ = (a2 − b2)y + b2 , σ =

aφ − bψ
a2 − b2 , χ =

bφ − aψ
a2 − b2 .

• The proof of mode stability proceeds almost identically to that for Myers-Perry, the only
difference in the energy functional E being that the prefactor P of |∂tΦ|

2 is modified. It is
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8z2 +
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8
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2s2
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− 1
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The positivity that holds for δi = 0 (Myers-Perry) is true a fortiori for δi > 0.



Some Further Applications of Supergravity Black Holes

• In recent years it has been understood that there is large rotating black hole lurking at the
centre of just about every galaxy, and also there are smaller black holes whose presence
can be detected through the gravitational radiation generated when mergers take place.

• Now that these black holes can actually be observed, either directly or indirectly, it raises
the possibility of testing the predictions of general relativity in these extreme conditions.
For example, one can probe the extent to which the observational results are in line with
the predictions for the Kerr metric.

• To do this one can consider some parameterised family of metrics that reduces to the
Kerr metric when the parameters are turned off, and to compare the physical predictions
from the different members of the family with the actual observational data. For randomly
chosen such families, the chances are the metrics will suffer from some pathologies,
such as requiring an energy-momentum tensor that violates a positive-energy criterion,
or having causality violation.

• The charged black holes of supergravity provide nice parameterised families of black hole
metrics that are known to be free of such pathologies. They are solutions of a theory
with a well-posed initial-value problem; they have positive energy; the propagation of
time-dependent solutions is causal; the Hamilton-Jacobi equation for null geodesics is
integrable; and the Klein-Gordon equation is separable.

• In various papers in collaboration with Gary Gibbons, Mirjam Cvetič and Bernard Whiting,
we have used the supergavity black holes as “foils” (to use a term coined by Thibault
Damour) to test some of the predictions against observation. Some examples include
calculating the shape of the “shadow” cast by the black hole and the characteristics of the
photon sphere, and calculating the Love numbers that characterise the response of the
black hole to tidal perturbations.



And Finally...

HAPPY BIRTHDAY Hermann!!!!!
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