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Overview

1 Topologies on Lie groups

(Recognizing the Lie group SL(n;R) with minimal information)

2 Topological Kac�Moody groups

(Thinking about Kac�Moody groups in exactly the same way)

3 Kac�Moody symmetric spaces

(Studying the Kac�Moody coset sigma model)
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Amalgams of groups

Let

(J; <) be a partially ordered set,

for each i 2 J let Gi be a group, and

for each i < j let

�ji : Gi ,! Gj

be a group monomorphism such that for all i < j < k one has

�ki = �kj � �
j
i :

Then the datum (
(Gi )i2J ; (�

j
i )i<j

)
is a called an amalgam of groups.
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Universal enveloping groups

Let A =
(
(Gi )i2J ; (�

j
i )i<j

)
be an amalgam of groups.

An enveloping group of A is a tuple (H; (�i )i2J) consisting of

a group H and

group homomorphisms �i : Gi ! H such that for all i < j one has

�i = �j � �
j
i :

A universal enveloping group is an enveloping group (G ; ( i )i2J) with
the property that for any enveloping group (H; (�i )i2J) there exists a

unique group homomorphism

Ψ : G ! H

such that for all i 2 J one has

�i = Ψ �  i :

Examples: direct limits, free products, amalgamated products A �C B
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Constructing universal enveloping groups

Let A =
(
(Gi )i2J ; (�

j
i )i<j

)
be an amalgam of groups.

Then the tuple (G ; ( i )i2J) with

G :=

〈
fxg : g 2 [Ag j

8i < j 2 J 8g; h 2 Gi :

xgxh = xgh and xg = x
�

j

i
(g)

〉
and

 i : Gi ! G : g 7! xg

is a universal enveloping group of A.

Theorem 1 (Tits 1974)

Let G = SL(n;R). De�ne the amalgam A via

Gi ;i+1 := block-diagonal SL2 in rows and columns i and i + 1,

Gi ;i+1;j ;j+1 := corresponding block-diagonal SL3 or SL2 � SL2

and the natural embeddings.

Then G together with the natural embeddings of the above groups form

a universal enveloping group of A.
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Lie groups as universal enveloping groups

Theorem 2 (Glöckner, Hartnick, K. 2010)

Let G = SL(n;R) and let

Gi ;i+1 := block-diagonal SL2 in rows and columns i and i + 1.

Endow each Gi ;i+1 � R2�2 with the usual (Lie group) topology and let

O be the �nest group topology on G that makes the embeddings

Gi ;i+1 ! G

continuous.

Then O is the usual (Lie group) topology on G � Rn�n.

The proof uses the following open mapping theorem: A surjective,

continuous homomorphism f : G ! H between Hausdor� topological

groups where G is �-compact and H is a Baire space, is open.

Theorems 1 and 2 work for arbitrary split semisimple Lie groups.
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De�nition via colimits in the two-spherical situation

De�nition 3

Let

∆ be an arbitrary Dynkin diagram without label 1,

(G�)�2∆ be a family of copies of SL2(R),
(G��)f�;�g2(∆

2
) be a family of appropriate algebraically simply

connected split real Lie groups, and

G� ,! G�� the natural embeddings.

The (algebraically simply connected split real) topological Kac�Moody

group G of type ∆ is de�ned as the universal enveloping group of the

above amalgam in the category of topological groups.

Abramenko�Mühlherr (1997) established the above approach in the

category of abstract groups using the simple connectedness of the

complex of pairs of opposite simplices of two-spherical twin buildings.
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De�nition in the general situation

De�nition 4

Let

A be a generalized Cartan matrix and g the corresponding (real)

Kac�Moody algebra,

∆ be the corresponding Dynkin diagram,

(G�)�2∆ be a family of copies of (P)SL
2
(R) � Aut(g) integrated

from the simple root spaces,

G < Aut(g) the subgroup generated by the (G�)�2∆,

G ↠ G a central extension lifting the rank-1 groups to SL2(R)'s
and the torus to a direct product.

The (algebraically simply connected split real) topological Kac�Moody

group G of type ∆/A is de�ned as this abstract group G endowed with

the �nest group topology making the embeddings of the SL2(R)'s
(considered as Lie groups) continuous.



Properties

A topological Kac�Moody group is Hausdor� and k!.

(Kac�Peterson 1980s and Hartnick�K.�Mars 2013)

Subgroups of spherical type carry the Lie group topology.

(Hartnick�K.�Mars 2013)

The Iwasawa decomposition G = KAU+ is a homeomorphism.

(Freyn�Hartnick�Horn�K. 2017)

U+ is contractible and hence �1(G ) �= �1(K ). (Kumar 2002)

The big cell B+B� is open and dense and homeomorphic to

U+ � T � U�. (Kac�Peterson 1980s and Hartnick�K.�Mars 2013)
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Spin: Computing �1(G ) �= �1(K )

Let

G be a topological Kac�Moody group for a graph ∆,

K the group of �xed points of the Cartan�Chevalley involution,

G��
�= SL(3;R) one of the groups in the de�ning amalgam,

K��
�= SO(3) its group of �xed points under transpose-inverse.

Then K�� ,! K ! K=K�� is a principal �ber bundle (Palais 1961) and

one obtains the following long exact sequence

�4(K=K��) ! �3(K��)! �3(K )! �3(K=K��)

! �2(K��)! �2(K )! �2(K=K��)

! �1(K��)! �1(K )! �1(K=K��)! �0(K��):

Note that

G=P+
��
�= K=(T \ K )K��

by the Iwasawa decomposition.
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Generalized �ag manifolds

Ghatei�Horn�K.�Weiÿ 2017 constructed a spin double cover

Spin(∆) ↠ K (conjectured by Damour�Hillmann)

via the gen. spin representations described by Hainke�K.�Levy 2015

based on the E10 example by Damour�Kleinschmidt�Nicolai and de

Buyl�Henneaux�Paulot.

One has K=K��
�= Spin(∆)=Spin(∆��) = Spin(∆)=Spin(3).

The resulting exact sequence is

�1(Spin(∆��))! �1(Spin(∆))! �1(Spin(∆)=Spin(∆��)) = �1(K=K��)

Theorem 5 (Harring�K. 2022)

For simply-laced ∆, the covering map

Spin(∆)=Spin(∆��) = K=K�� ↠ K=(T \ K )K��

is universal. In particular, Spin(∆) ↠ K is universal.

In the symmetrizable case, �1(G ) is known.
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The fundamental group of a real Kac�Moody group

Harring, K. 2022

Π Πadm coloured

A1 g

An b b b b

Bn b b b r

Cn r r r g

Dn b b b b

b

F4 F4 r r b b

G2 b b
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Abstract symmetric spaces following Loos

De�nition 6 (Loos)

An abstract symmetric space (of non-compact type) is a set X with a

multiplication

� : X � X ! X : (x ; y) 7! x � y

satisfying the following axioms:

1 for each x 2 X one has x � x = x ,

2 for each pair of points x ; y 2 X one has x � (x � y) = y ,

3 for each triple of points x ; y ; z 2 X one has

x � (y � z) = (x � y) � (x � z);

4 for each pair x ; y 2 X one has x � y = y if and only if y = x .

Example: For each group G the map G � G ! G : (x ; y) 7! xy�1x

satis�es axioms 1, 2, 3.
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One-parameter groups without C 1 hypothesis

Theorem 7 (Freyn, Hartnick, Horn, K. 2020)

Let (X ; �) be a topological space with continuous � satisfying axioms

1, 2, 3, 4.

Given x 2 X let sx (y) := �(x ; y) and given a geodesic 
 � X

let

T
 := fsp � sq j p; q 2 
g � Aut(X ; �):

Then the following hold:

T

�= (R;+) is a one-parameter subgroup of Aut(X ; �).

T
 acts sharply transitively on 
 by Euclidean translations.

A geodesic 
 � X is de�ned to be the image of a bijection
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Properties of Kac�Moody symmetric spaces

Freyn, Hartnick, Horn, K. 2020 and others

G=K is a topological space with continuous multiplication

�(gK ; hK ) = g�(g)�1�(h)K

satisfying axioms 1, 2, 3, 4

(where G is a top. Kac�Moody group,

K its subgroup generated by the maximal compact subgroups of

the G�
�= SL2(R), and � the involution of G �xing K pointwise.)

The maximal �ats of G=K are in 1-1 correspondence to the

maximal tori of G .

Aut(G=K ; �) = Aut(G ).

G=K admits a causal structure with the two halves of the

topological twin building as the future and past boundaries.

G=K admits a G -invariant partial order, if Kostant convexity holds

for G . G -invariant partial order () no time travel

G=K is the universal object of the amalgam of embedded

sub-symmetric spaces of ranks 1 and 2. (Grüning�K. 2020)
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Kostant convexity

Kostant convexity states that the A-part of the UAK

decomposition of an element

kIuak

with kI 2 K \ hUI ;U�I i lies in the convex hull of fw :a j w 2WIg.

Kac�Peterson 1984 proved a local version of Kostant convexity

(adjoint action of K on the Kac�Moody algebra).

cosmological billiards by Damour, Hennaux 2001 is equivalent to

global Kostant convexity as can be extracted from Damour,

Henneaux, Nicolai 2003 (Chapter 8) and, in more detail, Henneaux,

Persson, Spindel 2008 (Chapter 9).
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Kostant convexity

Kostant convexity of semisimple and reductive Lie groups is well known

(Kostant 1973).

P. Zellhofer (Kiel) has found proofs for Kostant convexity of

SL(n;R); GL(n;R); Sp(2n;R)

that relies on the language of root systems, root subgroups, buildings,

highest weight representations, and convex geometry.

He is now developing a strategy for an inductive proof within the

category of rational points of isotropic real reductive linear algebraic

groups using the above notions.

Once this is done, there is no doubt this will generalize to Kac�Moody

groups.
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