On the Wheeler-DeWitt equation and chaos

Axel Kleinschmidt @ HermannFest 15 Sep 2022

Based on work with Hermann Nicolai et al.

[AK, HN 2202.12676, JHEP]
[AK, HN, Palmkvist 1010.2212, ATMP]
[AK, Köhn, HN 0907.3048, PRD]
[Feingold, AK, HN 0805.3018, J. Algebra]

The E_{10} conjecture

Es and the BKL-Limit of M Theory

H. Nicolai AEI, Golm

based on work done with

T. Damour & M. Henneaux _

(AEI-2002-054/IHES/P/02/48, to appear)

Strings 2002, Cambridge

The E_{10} conjecture

Main Idea: Search for map that relates the time evolution of the geometrical M Theory data at each $G_{MN}(t,\mathbf{x})$ spatial point [the fields and all their spatial gradients] to a null geodesic motion on the ∞ -dimens. coset space $E_{10}/K(E_{10})$.

cf. conjectured appearance of E10 in D = 1 reduction of D= 11 SUGRA

(Julia, 1983)

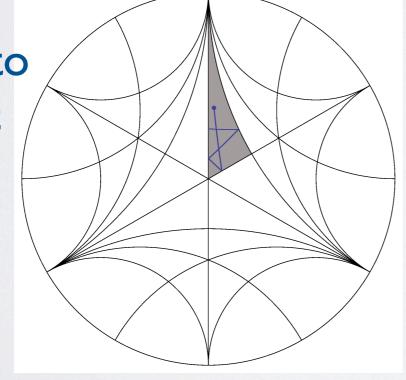
still a conjecture

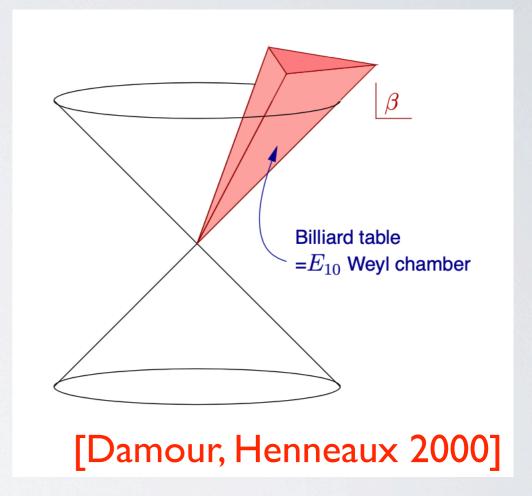
Simpler version: Cosmological billiards

Replace infinite-dimensional symmetric space $E_{10}/K(E_{10})$ by its ten-dimensional Cartan subalgebra: Lorentzian signature $\mathbb{R}^{1,9}$, parametrised by "scale factors" β^a , undergoing free null motion...

Remnant of other supergravity fields near a space-like singularity: Hard reflecting walls \Rightarrow billiard picture Geometry that of E_{10} Weyl group

Projection to hyperbolic space





Chaotic classical motion!

Cf. [BKL, Misner]

What happens to this picture upon quantisation?

IICLX

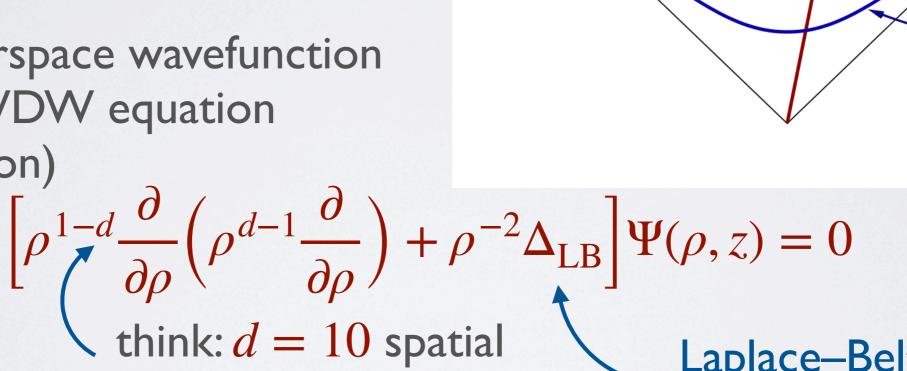
What happens to this picture upon quantisation?

Change coordinates

$$\beta^{a} = \rho \omega^{a}, \quad \omega^{a} G_{ab} \omega^{b} = -1$$

$$\rho^{2} = -\beta^{a} G_{ab} \beta^{b}$$

Mini superspace wavefunction satisfies WDW equation (null motion)



Singularity: $\rho \to \infty$

Laplace-Beltrami on unit hyperboloid

$$\left[\rho^{1-d}\frac{\partial}{\partial\rho}\left(\rho^{d-1}\frac{\partial}{\partial\rho}\right) + \rho^{-2}\Delta_{\mathrm{LB}}\right]\Psi(\rho,z) = 0$$

Separate variables: $\Psi(\rho, z) = R(\rho)F(z)$

For Laplace eigenfunction

$$-\Delta_{LB}F(z) = EF(z)$$

get

$$R_{+}(\rho) = \rho^{-\frac{d-2}{2} \pm i\sqrt{E - \left(\frac{d-2}{2}\right)^2}}$$

⇒ Left with spectral problem on unit hyperboloid...

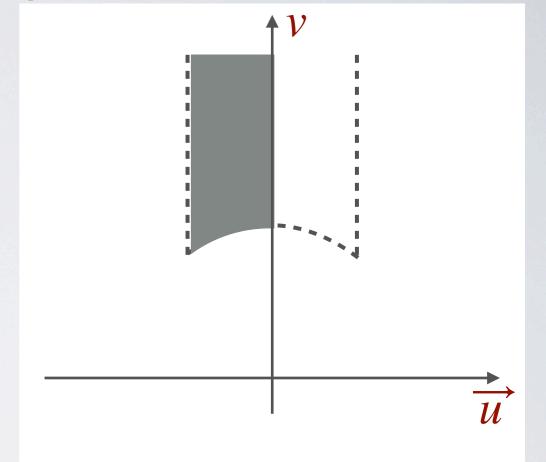
Classical billiard ball is constrained to Weyl chamber

⇒ Dirichlet boundary condition

Use upper half-plane model of (d-1)-dim'l hyperbolic space

$$z = (\overrightarrow{u}, v), \quad \overrightarrow{u} \in \mathbb{R}^{d-2}, v \in \mathbb{R}_{>0}$$

$$\Rightarrow -\Delta_{LB} = v^{d-1}\partial_{v}(v^{3-d}\partial_{v}) + v^{2}\partial_{\overrightarrow{u}}^{2}$$



With Dirichlet boundary condition generalise [Iwaniec] to get

$$-\Delta_{\text{LB}}F(z) = EF(z) \quad \Rightarrow \quad E \ge \left(\frac{d-2}{2}\right)^2$$

[w/ M. Köhn]

Recall
$$R_{\pm}(\rho) = \rho^{-\frac{d-2}{2} \pm i\sqrt{E - \left(\frac{d-2}{2}\right)^2}}$$
 in separation ansatz

$$\Rightarrow$$
 Inequality $E \ge \left(\frac{d-2}{2}\right)^2$ implies that full wavefunction

 $\Psi(\rho,z)$ vanishes at singularity $(\rho \to \infty)$, but remains oscillating and complex. Dilutes infinitely.

⇒ [DeWitt 1967] quantum-mechanical resolution of singularity?

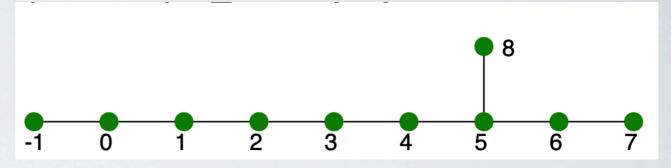
Other details of the spectrum of allowed E depend on exact shape of billiard table

A mathematical curiosity

Shape of billiard table determined by E_{10} Weyl group acting on $z=(\overrightarrow{u},v)$ with $\overrightarrow{u}\in\mathbb{R}^8$ [Damour, Henneaux]

Now $\mathbb{R}^8 \cong \mathbb{O}$ the octonions.

Write z = u + iv with $u \in \mathbb{O}$. The simple Weyl reflections are



$$w_{-1}(z)=rac{1}{ar{z}}, \quad w_0(z)=-ar{z}+1, \quad w_j(z)=-\epsilon_j\, ar{z}\, \epsilon_j$$
 oct. units ϵ_i span a lattice $O\subset \mathbb{O}$, the octavians. \Leftrightarrow simple E_8 roots

Even part of Weyl group is $W_+(E_{10}) \cong PSL_2(O)$. [w/ A. Feingold] [w/ J. Palmkvist]

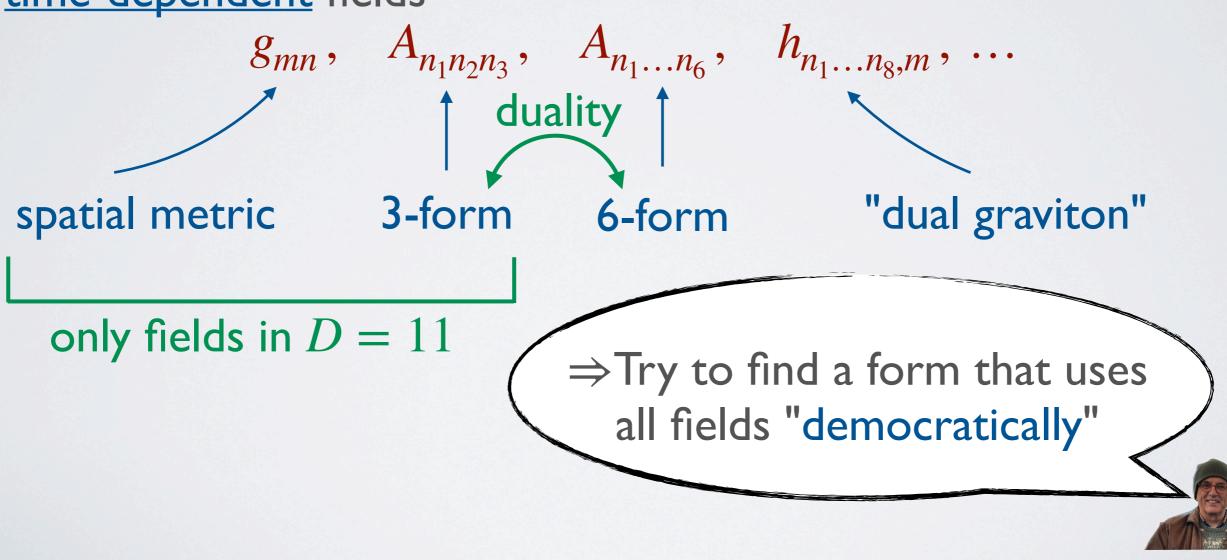
Mini superspace wavefunction $\Psi(\rho, z)$ is an odd Maaß form of $PSL_2(O)$ (oct. modular group). For similar ideas in 3+1, e.g.

[Graham, Szépfalusy 1990][Perry 2021]

Go back to full E_{10} conjecture. The β^a are the diagonal components of the spatial metric

⇒ need to include other components and matter fields.

From level decomposition of E_{10} under GL_{10} get infinity of time-dependent fields



Use Bunster-Henneaux (a.k.a. Henneaux-Teitelboim) formalism for dual fields in field theory

- breaks manifest Lorentz covariance (good)
- Hamiltonian form (maybe good)
- explicitly solves some constraints but does not remove spatial dependence (not so good)

Starting point: Canonical form of D=11 (super-)gravity

$$\mathcal{L}_{can} = \frac{1}{2} \dot{g}_{mn} \Pi^{mn} + \frac{1}{3!} \dot{A}_{mnp} \Pi^{mnp} - N\mathcal{H} - N^m \mathcal{H}_m - \frac{1}{2} A_{tmn} \mathcal{G}^{mn}$$
Conjugate momenta

Canonical constraints

$$m, n, \dots = 1, \dots, 10$$

$$\mathcal{L}_{can} = \frac{1}{2}\dot{g}_{mn}\Pi^{mn} + \frac{1}{3!}\dot{A}_{mnp}\Pi^{mnp} - N\mathcal{H} - N^{m}\mathcal{H}_{m} - \frac{1}{2}A_{tmn}\mathcal{G}^{mn}$$

Focus on matter sector (to start with): Gauß constraint

$$\mathcal{G}^{mn} = -\partial_p \left[\Pi^{mnp} + \frac{1}{3 \cdot 144} \varepsilon^{mnpk_1 \dots k_7} A_{k_1 k_2 k_3} F_{k_4 \dots k_7} \right] \stackrel{!}{=} 0$$

Solve locally by

$$\Pi^{mnp} + \frac{1}{3 \cdot 144} \varepsilon^{mnpk_1...k_7} A_{k_1 k_2 k_3} F_{k_4...k_7} = \frac{1}{6!} \varepsilon^{mnpk_1...k_7} \partial_{k_1} A_{k_2...k_7}$$

brings in the dual six-form instead of Π^{mnp} !

Resulting flat space action

$$\mathcal{L}_{can} = \frac{1}{2 \cdot 3! \cdot 7!} \dot{A}_{mnp} \varepsilon^{mnpk_1 \dots k_7} F_{k_1 \dots k_7} - \frac{1}{2 \cdot 4! \cdot 6!} F_{mnpq} \varepsilon^{mnpqk_1 \dots k_6} \dot{A}_{k_1 \dots k_6}$$

$$+ \frac{1}{3! \cdot 864} \dot{A}_{mnp} \varepsilon^{mnpk_1 \dots k_7} A_{k_1 k_2 k_3} F_{k_4 \dots k_7}$$

$$- \frac{1}{2 \cdot 4!} e^2 F_{m_1 \dots m_4} g^{m_1 n_1} \dots g^{m_4 n_4} F_{n_1 \dots n_4} - \frac{1}{2 \cdot 7!} e^2 F_{m_1 \dots m_7} g^{m_1 n_1} \dots g^{m_7 n_7} F_{n_1 \dots n_7}$$

Treating this canonically gives conjugate momenta Π^{mnp} and $\Pi^{n_1...n_6}$ and a mixed system of first- and second-class constraints.

The E_{10} conjecture

After some work find Dirac brackets

$$\left\{ F_{m_1 \cdots m_4}(\mathbf{x}), F_{n_1 \cdots n_4}(\mathbf{y}) \right\}_{\mathrm{DB}} = 0$$

non-commutative variables

$$\left\{ F_{m_1 \cdots m_4}(\mathbf{x}), F_{n_1 \cdots n_7}(\mathbf{y}) \right\}_{\text{DB}} = -7 \, \varepsilon_{m_1 \cdots m_4[n_1 \cdots n_6} \partial_{n_7]} \delta(\mathbf{x}, \mathbf{y})$$

$$\left\{ F_{m_1 \cdots m_7}(\mathbf{x}), F_{n_1 \cdots n_7}(\mathbf{y}) \right\}_{\text{DB}} = -\frac{1}{432} \varepsilon_{m_1 \cdots m_7 p_1 p_2 p_3} \varepsilon_{n_1 \cdots n_7 p_4 p_5 p_6} \varepsilon^{p_1 \cdots p_6 q_1 \cdots q_4} F_{q_1 \cdots q_4}(\mathbf{x}) \delta(\mathbf{x}, \mathbf{y})$$

Can be realised as operators

$$\hat{F}_{m_1...m_4}(\mathbf{x}) = -\frac{2}{6!} i\hbar \, \varepsilon_{m_1...m_4 n_1...n_6} \frac{\delta}{\delta A_{n_1...n_6}(\mathbf{x})} + \frac{10}{3} \, \partial_{[m_1} A_{m_2 m_3 m_4]}(\mathbf{x})$$

$$\hat{F}_{m_1...m_7}(\mathbf{x}) = -\frac{2}{3!} i\hbar \, \varepsilon_{m_1...m_7 n_1 n_2 n_3} \left(\frac{\delta}{\delta A_{n_1 n_2 n_3}(\mathbf{x})} + \frac{1}{12} A_{s_1 s_2 s_3}(\mathbf{x}) \frac{\delta}{\delta A_{s_1 s_2 s_3 n_1 n_2 n_3}(\mathbf{x})} \right)$$

$$-\frac{7}{3}\partial_{[m_1}A_{m_2...m_7]}(\mathbf{x}) + \frac{140}{3}A_{[m_1m_2m_3}\partial_{m_4}A_{m_5m_6m_7]}(\mathbf{x})$$

2002

$$\hat{F}_{m_{1}...m_{4}}(\mathbf{x}) = -\frac{2}{6!}i\hbar \, \varepsilon_{m_{1}...m_{4}n_{1}...n_{6}} \frac{\delta}{\delta A_{n_{1}...n_{6}}(\mathbf{x})} + \frac{10}{3} \, \delta_{[m_{1}} A_{n_{2}m_{3}m_{4}]}(\mathbf{x}) \qquad \text{[BKL]}$$

$$\hat{F}_{m_{1}...m_{7}}(\mathbf{x}) = -\frac{2}{3!}i\hbar \, \varepsilon_{m_{1}...m_{7}n_{1}n_{2}n_{3}} \left(\frac{\delta}{\delta A_{n_{1}n_{2}n_{3}}(\mathbf{x})} + \frac{1}{12} A_{s_{1}s_{2}s_{3}}(\mathbf{x}) \frac{\delta}{\delta A_{s_{1}s_{2}s_{3}n_{1}n_{2}n_{3}}(\mathbf{x})} \right)$$

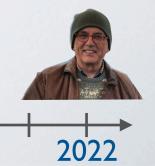
$$-\frac{7}{3} \delta_{[m_{1}} A_{m_{2}...m_{7}]}(\mathbf{x}) + \frac{140}{3} A_{[m_{1}m_{2}m_{2}} \delta_{m_{4}} A_{m_{5}m_{6}m_{7}]}(\mathbf{x})$$

Don't know how to relate spatial gradient terms to E_{10}

Implement Hamiltonian constraint $\hat{\mathcal{H}}\Psi=0$ WDW equation

$$\left[\frac{1}{2\cdot 4!}e^{2}F_{m_{1}...m_{4}}g^{m_{1}n_{1}}\cdots g^{m_{4}n_{4}}F_{n_{1}...n_{4}} + \frac{1}{2\cdot 7!}e^{2}F_{m_{1}...m_{7}}g^{m_{1}n_{1}}\cdots g^{m_{7}n_{7}}F_{n_{1}...n_{7}}\right]\Psi = 0$$

Wavefunction $\Psi = \Psi(A_{n_1 n_2 n_3}, A_{n_1 \dots n_6}, \dots)$ at fixed $\mathbf{x} = \mathbf{x}_0$



Relation to E_{10} ?

Consider functional realisation of E_{10} Functions Φ defined on symmetric space $E_{10}/K(E_{10})$. Gives partial differential operators in $(g_{mn}, A_{n_1 n_2 n_3}, A_{n_1 \dots n_6}, \dots)$ for generators of E_{10} .

Unique second order differential equation invariant under E_{10}

$$\Omega \Phi = 0$$

 Ω is the quadratic Casimir of E_{10} . No ordering ambiguities

For the terms considered

Point of the talk! $\Omega \Phi = 0 \quad \Leftrightarrow \quad \hat{\mathcal{H}} \Psi = 0$ WDW equation

$$\Omega = \Phi \Omega$$

 E_{10} Casimir

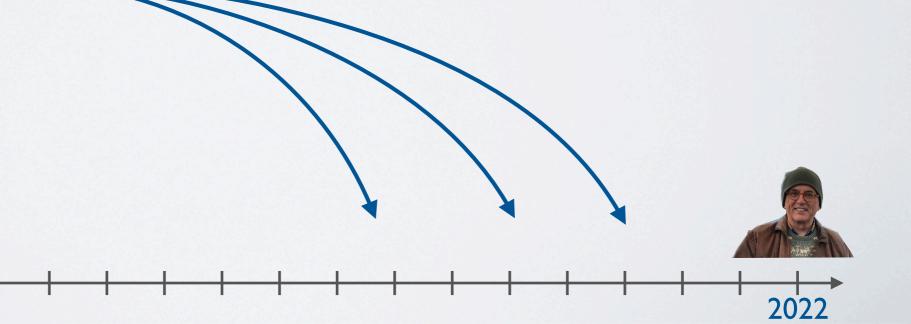
Concluding remarks

- Consider also solutions of the equation. With modularity (U-duality type) get again a vanishing wavefunction at the singularity ⇒ robustness of quantum cosmological billiard Subtleties for imaginary roots...
- ▶ Different view on quantisation: functional derivatives go to partial derivatives Not discretisation but relegation of spatial gradients to dual fields ⇒ time- and space-less WDW equation
- Some terms ignored ⇒ need to understand better how to incorporate them by using yet "higher" potentials
- Need to incorporate gravity fully, starting with the dual graviton
- For related work: [Damour, Spindel]

2022

Open questions

- Is E_{10} supergravity or more? Is there a relation to the membrane?
- \blacktriangleright What about UV-finiteness? Quantisation and $E_{10}(\mathbb{Z})$?
- Do we learn anything about Kac-Moody algebras? Does the exponential growth of root multiplicities relate to an inaccessibility of the singularity?
- Does it all work?



Many happy returns, Hermann!