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N = 8 supergravity

E. Cremmer, B. Julia, J.Scherk, B. de Wit, H. Nicolai,...

• it is very special – maximal, has hidden symmetries...
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N = 8 supergravity

E. Cremmer, B. Julia, J.Scherk, B. de Wit, H. Nicolai,...

• it is very special – maximal, has hidden symmetries...

• it is conformal anomaly free
K.A.M., H. Nicolai, Phys.Lett.B 772 (2017) 169

• N = 8 supergravity field content:
1 graviton
8 gravitinos
28 vectors
56 spin 1/2 fermions
70 scalars

• we assume that there is some truth in it, at least in field
content (maybe as some limit of M theory) even if we don’t
expect that it is realized at any scale
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N = 8 SUGRA and the Standard Model
M. Gell-Mann, H. Nicolai, N.Warner

• after full susy breaking it has exactly 48 ’massless’ fermion

dofs χijk as in SM with 6 quarks and 6 leptons
– possible explanation of 3 generations!
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by ±1/6 (SU(2) would play a very different role)
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• the original Gell-Mann conjecture of SU(3)×U(1) (extended

by Nicolai and Warner) gives proper group assignments for
both quarks and leptons but the electric charges are shifted
by ±1/6 (SU(2) would play a very different role)

• a correction of the usual U(1) generator in SU(3)× U(1)

J = (T ∧1∧1+1∧T ∧1+1∧1∧T+T ∧ T ∧ T ), J 2 = −1

gives proper quantum numbers of all quarks and leptons!
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• after full susy breaking it has exactly 48 ’massless’ fermion

dofs χijk as in SM with 6 quarks and 6 leptons
– possible explanation of 3 generations!

• the original Gell-Mann conjecture of SU(3)×U(1) (extended

by Nicolai and Warner) gives proper group assignments for
both quarks and leptons but the electric charges are shifted
by ±1/6 (SU(2) would play a very different role)

• a correction of the usual U(1) generator in SU(3)× U(1)

J = (T ∧1∧1+1∧T ∧1+1∧1∧T+T ∧ T ∧ T ), J 2 = −1

gives proper quantum numbers of all quarks and leptons!
K.A.M., H. Nicolai, Phys. Rev. D91 (2015) 065029

• this correction is outside of N = 8 SUGRA!
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Massive Gravitini

K.A.M., H. Nicolai, Phys. Rev. Lett. 121 (2018) 091601

• The eight massive gravitini under SU(3)× U(1)em as
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where the charges include the J correction
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where the charges include the J correction

• all gravitini carry fractional electric charges!

• complex triplet of gravitini is in addition strongly interacting

• the assignment makes the lightest of them stable – there is
no particle it can decay into

• being stable, the color neutral gravitini should be around us
(they were never in thermal equilibrium) – DM candidates,
seeds of massive BHs in the very early Universe

• strongly interacting gravitini (’gravimesons’) should also be
around us but in much lower abundance – UHECR
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Gravitini as DM

K.A.M. and H. Nicolai, Phys. Rev. D100 (2019) 035001

• Electrically charged DM are very strongly constrained by
existing data:

|q| . 7.6 · 10−10
( m

1TeV

)
1

2

K.A. Meissner, Charged Planck mass gravitini – p. 8/19



Gravitini as DM

K.A.M. and H. Nicolai, Phys. Rev. D100 (2019) 035001

• Electrically charged DM are very strongly constrained by
existing data:

|q| . 7.6 · 10−10
( m

1TeV

)
1

2

• For the DM candidates usually discussed (axion-like or
WIMP-like) assumed to have masses . O(1) TeV the
allowed charges are extremely small.
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• For the DM candidates usually discussed (axion-like or
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• Electrically charged DM are very strongly constrained by
existing data:

|q| . 7.6 · 10−10
( m

1TeV

)
1

2

• For the DM candidates usually discussed (axion-like or
WIMP-like) assumed to have masses . O(1) TeV the
allowed charges are extremely small.

• If we extrapolate this formula to the Planck scale then |q| . 1
i.e. compatible with charges of our gravitini ±2/3 so our DM
can be charged!

• these DM gravitini, being charged and very heavy, have very
distinctive features
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Search for DM

• The first argument of Zwicky from 30’ still valid

• LIGO/Virgo result combined with the other observations –
32% of matter: 5% luminous, 27% dark

• Thousands of theoretical papers, billions of dollars for
experiments – zero result what DM is made of

• Allowed window for masses: 40 orders of magnitude

10−12 eV...1028 eV
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Prospects of detection
• estimated mass density of DM in the proximity of the Solar

System is ∼ 0.3 · 106 GeV/m −3.
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• if velocity ∼ 400 km/s we arrive at a flux estimate

Φ ∼ 10−9 m−2s−1sr−1 ∼ 0.03 m−2yr−1sr−1

(may be lower if DM co-rotates with the Solar system)
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Prospects of detection
• estimated mass density of DM in the proximity of the Solar

System is ∼ 0.3 · 106 GeV/m −3.

• we assume that the gravitini are of ∼ Planck mass

• if velocity ∼ 400 km/s we arrive at a flux estimate

Φ ∼ 10−9 m−2s−1sr−1 ∼ 0.03 m−2yr−1sr−1

(may be lower if DM co-rotates with the Solar system)

• large detectors (CMS, ATLAS or Superkamiokande).have
the triggering focused only on relativistic particles

• A dedicated time-of-flight experiment would be the best but
difficult because of low flux

• The other more promising are ’paleodetectors’ – looking for
ionizing tracks in old crystals

• signature should be very different from anything else known
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Ultra High Energy Cosmic Rays

K.A.M. and H. Nicolai, JCAP 09 (2019) 041

• The gravitini in ordinary stars essentially do not annihilate,
the cross section is too small
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• The gravitini in ordinary stars essentially do not annihilate,
the cross section is too small

• However, if a star collapses to a neutron star, then the
annihilation starts

• The products can escape only when the annihilation takes
place in the ’skin’ of the neutron star (crust ∼ last 100 m)

• But in the crust there are mostly iron nuclei – the products of
the collisions should be light nuclei and not protons!

• extrapolating the formula for multiplicities from the LHC

multiplicity ∼ 0.27αs(E) exp

(

2.26
√

αs(E)

)

to EP we get ∼ 106 (⇒ particle energies 1021 eV)
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Ultra High Energy Cosmic Rays

K.A.M. and H. Nicolai, JCAP 09 (2019) 041

• It is exactly what is measured in Pierre Auger observatory

UHECR (∼ 1021 eV) are not protons but nuclei up to iron!
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Ultra High Energy Cosmic Rays
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• It is exactly what is measured in Pierre Auger observatory

UHECR (∼ 1021 eV) are not protons but nuclei up to iron!

• we calculate the flux:
• For strongly interacting particles the annihilation cross

section σ varies only very slowly with the energy
√
s, and

can be approximated by the non-perturbative (Froissart
bound) formula

〈σβ〉∼
[

36− 4ln

( √
s

ΛQCD

)

+ 0.84

(

ln

( √
s

ΛQCD

))2
]

mb

with ΛQCD = 0.4 GeV. For
√
s = 2MP we have

〈σβ〉 ∼ 32mb
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Ultra High Energy Cosmic Rays

K.A.M. and H. Nicolai, JCAP 09 (2019) 041

• the relic abundance of color gravitini ρT at freeze-out

(32mb) ρT ≡ (32mb) g

(

mT

2π

)3/2

e−m/T =
T 2

2MP

⇒
m

T
∼ 90 ⇒ ρT ∼ 3 · 1059 m−3
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• The temperature T ∼ 2 · 1016 GeV corresponds to cosmic

time tT = MP /T
2 ∼ 3 · 10−39 s.
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• the relic abundance of color gravitini ρT at freeze-out

(32mb) ρT ≡ (32mb) g

(

mT

2π

)3/2

e−m/T =
T 2

2MP

⇒
m

T
∼ 90 ⇒ ρT ∼ 3 · 1059 m−3

• The temperature T ∼ 2 · 1016 GeV corresponds to cosmic

time tT = MP /T
2 ∼ 3 · 10−39 s.

• the present day density of strongly interacting gravitini

ρT (aT )/a0)
3 ∼ 10−9 m−3
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Ultra High Energy Cosmic Rays

K.A.M. and H. Nicolai, JCAP 09 (2019) 041

• density of gravitini inside a neutron star

ρNS ∼ 5 · 109m−3.
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Ultra High Energy Cosmic Rays

K.A.M. and H. Nicolai, JCAP 09 (2019) 041

• density of gravitini inside a neutron star

ρNS ∼ 5 · 109m−3.

• The inverse lifetime of the strongly interacting gravitino as a
function of the neutron star time from its birth is

ΓNS(t) =
ΓNS(0)

1 + ΓNS(0)t

with the initial value (and 〈σβ〉 ∼ 32mb)

ΓNS(0) ∼
(

5 · 109
)

· (32 · 10−31) ·
(

3 · 108
)

s−1 ∼ 5 · 10−12s−1
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Ultra High Energy Cosmic Rays

K.A.M. and H. Nicolai, JCAP 09 (2019) 041

• number of neutron stars per galaxy ∼ 108;

∼ 109 galaxies within ∼ 250 Mpc;

a total number of 1017 UHECR emitters.
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• number of neutron stars per galaxy ∼ 108;

∼ 109 galaxies within ∼ 250 Mpc;

a total number of 1017 UHECR emitters.

• a young neutron star would continuously ‘spray’ high energy

protons or heavy ions at a rate ∼ 1016s−1

• we estimate the flux

NE ∼ 1017 · 1016
4(1024)2

m−2s−1 ∼ 10−16 m−2s−1

which is close to the observed rate of one UHECR event per

month and per 3000 km2
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Gravitini and giant black holes
K.A.M., H. Nicolai, Phys.Rev. D102 (2020) 103008

• Very massive (> 1 bln M⊙) black holes are observed in the
very early (< 1 bln y) Universe.
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• Very massive (> 1 bln M⊙) black holes are observed in the
very early (< 1 bln y) Universe.

• no standard mechanism can explain the observations

• (Color neutral) gravitini can form an initial black hole large
enough to be colder than the surrounding and overcome
Hawking evaporation

• Using the solution

ds2 = a(η)2
[

−(1− 2mBH/r)dη
2 +

dr2

1− 2mBH/r
+ r2dΩ2

]

in the expanding Universe we get the bounds at t ∼ 100 Myr

105 M⊙ . mBH . 2 · 109 M⊙

which is consistent with observations
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• As a consequence of the Hawking evaporation of seed black
holes with too small mass, our calculation also provides a
lower bound
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• It is thus a prediction of the present mechanism that the
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• As a consequence of the Hawking evaporation of seed black
holes with too small mass, our calculation also provides a
lower bound

• It is thus a prediction of the present mechanism that the
black holes formed from gravitinos should belong to a very
different mass category than the black holes formed from
stellar collapse and subsequent mergers

• such a gap in the mass distribution of black holes in the
Universe would constitute indirect observational evidence
for the existence of Hawking radiation.
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Summary

• adjustment of N = 8 → SU(3)× U(1) that gives proper

assignment of electric charges to quarks and leptons
requires that 8 very heavy gravitini are fractionally charged,
stable, strongly and electromagnetically interacting
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Summary

• adjustment of N = 8 → SU(3)× U(1) that gives proper

assignment of electric charges to quarks and leptons
requires that 8 very heavy gravitini are fractionally charged,
stable, strongly and electromagnetically interacting

• being extremely massive (and therefore very diluted) but
stable they can be candidates for (not so) Dark Matter

• their annihilation in neutron stars can explain the origin of
UHECR (in the form of light nuclei) observed on Earth

• Their clumping in the very early Universe can also explain
the origin of observed giant black holes in the early Universe

• time will tell...
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Happy Birthday, Hermann!
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