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Abstract

Let GC be the complex minimal adjoint Kac-Moody (KM) group
associated with a hyperbolic KM Lie algebra, g = g(C), with n× n
Cartan matrix C = [cij ]. In [CFF], Carbone, Feingold and Freyn
constructed an embedding of the twin building for GC into the
compact real form k of g which is generated by the subalgebras
sui

2, 1 ≤ i ≤ n. The corresponding subgroups SU i
2 generate the

compact real form K of GC, and their embedding map was only
equivariant under the action of K .
Here we present a similar result embedding the twin building for
the split real form GR into p, where the split real form of the KM
Lie algebra, gR = k⊕ p, is decomposed into the ±1 eigenspaces for
the Cartan involution on gR. If g is E10 then GR/KR is of interest
in physics, and p can be viewed as its tangent space, reflecting its
geometry.



Introduction
For about 20 years Hermann Nicolai has been my friend, co-author,
inspiration, and research supporter through many visits to AEI. I
have come to feel like AEI is my second home, a great place to
learn and study important mathematics deeply related to physics. I
want to express my deepest thanks and appreciation to Hermann,
and all the friendly colleagues I have met here over the years.
This work extends the results of Carbone, Feingold and Freyn
[CFF] from complex hyperbolic Kac-Moody (KM) groups to their
split real forms. We believe there is value in understanding the
action of a group on a set, and the theory of buildings was created
by J. Tits in order to gain such understanding for groups with a
BN pair. The theory of buildings (see [AB] and [RT]) has proven
its value in many ways, and been extended to include twin
buildings. This brief talk cannot include much background in the
theory of buildings, but we hope it will give some idea of how
buildings can be applied to the study of hyperbolic KM groups, a
topic of great interest for Hermann Nicolai and me.



Kac-Moody Lie Algebra Background (see [K])
A complex KM Lie algebra g = gC(C) with n × n Cartan matrix
C = [cij ] is given by generators {ei , fi , hi | 1 ≤ i ≤ n} and relations

[hi , hj ] = 0, [hj , ei ] = cijei , [hj , fi ] = −cij fi , [ei , fj ] = δijhi ,

(adei )1−cij (ej) = 0, i 6= j and (adfi )1−cij (fj) = 0, i 6= j ,

where adx (y) = [x , y ]. The scalars here are complex numbers in C.
The standard Cartan subalgebra h has basis {hi | 1 ≤ i ≤ n}.
Under the adjoint action, adh : g→ g,
h acts simultaneously diagonalizably on g.
The simultaneous eigenspaces

gα = {x ∈ g | [h, x ] = α(h)x , h ∈ h}

are labelled by certain linear functionals α ∈ h∗.
In particular, defining αi ∈ h∗ by αi (hj) = cij , we have

g0 = h, gαi = Cei and g−αi = Cfi .



Kac-Moody Lie Algebra Background
Call α ∈ h∗ a root when α 6= 0 and gα 6= 0, in which case gα is
called the α root space, and Mult(α) = dim(gα) is called the
multiplicity of root α.
Simple roots are Π = {αi | 1 ≤ i ≤ n}.
The set of all roots is Φ = {α ∈ h∗ | gα 6= 0 and α 6= 0}.
We have the Cartan decomposition

g = h⊕
⊕
α∈Φ

gα and [gα, gβ] ⊆ gα+β for α, β ∈ Φ.

The Weyl group W is generated by the reflections wi : h∗ → h∗

(or wi : h→ h) where

wi (αj) = αj − cijαi (or wi (hj) = hj − cijhi ), 1 ≤ i ≤ n.

W is an important group of symmetries of the root system Φ, and
Mult(α) = Mult(wα) for all w ∈ W.



Complex Kac-Moody Group G

The real roots are the W-orbit of Π,

Φre =W(Π) = {w(αi ) | w ∈ W, αi ∈ Π}

and all other roots are called imaginary. For α ∈ Φre , dim(gα) = 1.
The relations imply that for any α ∈ Φre and x ∈ gα, the operator
adx is locally nilpotent on g, so exp(adx ) ∈ GL(g) is well-defined.
This gives the (abelian) real root group

Uα = 〈exp(adx ) ∈ GL(g) | x ∈ gα〉.

The minimal adjoint Kac–Moody group is G = 〈Uα | α ∈ Φre〉.
There is a nondegenerate invariant symmetric bilinear form (·, ·) on
g, a generalization of the Killing form, which satisfies (gα, gβ) = 0
unless α + β = 0.



Compact Real Form K of Kac-Moody Group G
For 1 ≤ j ≤ n, the subgroup SLj

2 = 〈Uαj ,U−αj 〉 ≤ G acting on h
fixes the hyperplane Lh,j = {h ∈ h | αj(h) = 0} pointwise, but
takes the vector hj outside of h.
The family of Cartan subalgebras SLj

2 · h has Lh,j in common.
The compact real form k of g is generated by the subalgebras suj

2,
each with basis (fixed by the Cartan-Chevalley involution)

xj = 1
2(ej − fj), yj = i

2(ej + fj), zj = i
2(hj).

The subalgebra t = h∩ k of k has real basis {zj | 1 ≤ j ≤ n}, and it
has a Lorentzian geometry when C has signature (n − 1, 1).
The corresponding subgroups SU j

2 generate the compact real form
K of G , and SU j

2 acting on t fixes the hyperplane
Lt,j = {z ∈ t | αj(z) = 0} pointwise, but takes zj outside of t.
The family of subalgebras SU j

2 · t has Lt,j in common, and is
indexed by a 2-sphere with antipodes identified.



Split Real Forms gR and GR

The split real form gR of KM Lie algebra g is the real Lie algebra
with the same generators and relations associated with Cartan
matrix C . Changing the scalars from C to R we similarly get the
split real form GR of the KM group. Previous definitions of roots,
root spaces, Weyl group, etc, are adjusted.
The Cartan-Chevalley involution, ω, restricted to gR acts by

ω(ei ) = −fi , ω(fi ) = −ei , ω(hi ) = −hi , 1 ≤ i ≤ n,

so we get the ±1 eigenspace decomposition gR = k⊕ p. Clearly,
ej − fj ∈ k, ej + fj ∈ p and hj ∈ p, but more generally, x + ω(x) ∈ k
and x − ω(x) ∈ p for any x ∈ gR.
The geometry of the standard real Cartan subalgebra hR is
Lorentzian by assumption that Cartan matrix C is hyperbolic type.



Orbit of hR under K

As in [CFF], we wish to embed the (twin) building for GR into the
K -orbit of the standard Cartan subalgebra, hR. Here, K is the
group corresponding to k, and it certainly contains exp(adx ) for
any x ∈ k. Since [k, p] ⊆ p, it follows that for any x ∈ k, we have
exp(adx )(p) ⊆ p so K (p) ⊆ p. In particular, since hR ⊆ p this says
that K (hR) ⊆ p.
Inside hR we can find a two-sheeted hyperboloid, say,
A = {h ∈ hR | (h, h) = −1}, on which the Weyl group, W, acts so
as to tessellate each sheet, A±, into copies of a fundamental
domain. Those are the chambers of the apartment formed by each
sheet. The twin structure comes from the duality between the two
sheets, A+ in the forward lightcone and A− in the backward
lightcone. The K -orbit of A provides many apartments, but
chambers have boundaries which are shared by families of
chambers in different apartments. We can now see that local
structure of how Cartans are connected.



Local Structure of Cartans Under K Action
Let’s examine in more detail the action of exp(adr(ej−fj )) ∈ K on
h ∈ hR for any r ∈ R. We will use the brackets

[ej − fj , h] = −αj(h)(ej + fj) and [ej − fj , ej + fj ] = 2hj .

For better comparison with Theorem 4.5 of [CFF], define

xj = ej − fj
2 , yj = ej + fj

2 , zj = hj
2

a basis of the real Lie subalgebra slj2(R) with brackets

[xj , yj ] = zj , [yj , zj ] = −xj , and [zj , xj ] = yj .

With a little patience, or using Theorem 4.5 of [CFF], one can
compute that for any r ∈ R, we have

exp(adrxj )(h) = h − αj(h) sin(r)yj + αj(h)(cos(r)− 1)zj

so the hyperplane {h ∈ hR | αj(h) = 0} is fixed by these operators.



Local Structure of Cartans Under K Action

It is, of course, also the hyperplane fixed by the simple reflection,
wj ∈ W, so the intersection of the fixed hyperplane with the
two-sheeted hyperboloid is a boundary of the fundamental domain
on each sheet.
Applying this formula to zj , we get

exp(adrxj )(zj) = cos(r)zj − sin(r)yj ,

since αj(zj) = 1. So the family of Cartan subalgebras sharing that
fixed hyperplane, as well as the family of chambers in other
apartments that share that chamber boundary, is parametized by a
circle, S1, which matches R ∪∞ as expected for a building of a
group over R.



Definition of a Building

There are many approaches to the definition of a (twin) building
(see [AB]), but for a condensed approach see Section 2.3 of [CFF].
Just to give an idea of the basic definition, we have the following:

Definition (Tits Building)
A Tits building of type (W ,S) consists of a simplicial complex B
together with a collection A of subcomplexes, each of which is
called an apartment, such that

1. Each apartment is a Coxeter complex for the Coxeter system
(W ,S),

2. Each pair of chambers, i.e. simplices of maximal dimension in
B, is contained in a common apartment,

3. For two apartments A and A′ there is an isomorphism
ϕ : A→ A′, fixing the intersection A ∩ A′.



Example 1, the rank 2 Fibonacci Hyperbolic

In rank n = 2 the Weyl group is the infinite dihedral group, D∞,
each apartment is a line, and each building B± is a tree. We
model each apartment as a copy of the real line tessellated into
unit intervals (chambers) C(n) = [n − 1

2 , n + 1
2 ] for n ∈ Z, so the

vertices are Z + 1
2 . At each vertex a family of intervals (chambers)

is attached, each in a line (apartment) which is tessellated, and in
each of those lines chambers are attached, on ad infinitum. The
family of chambers attached at any vertex is the projective space
P1(F), where F is the field over which the group is defined, so for
F = R, we have P1(R) = S1 is the circle. Thus, in rank 2 each
building B± is a S1-tree. See [RT] for more about twin trees, and
see [F] for more about the rank 2 Fibonacci hyperbolic KM algebra.



F ib Root System and non-standard partition of Φre

Φ1 = W even{α1,−α2} and Φ2 = W even{−α1, α2}.

α1 α2

w2α1w1α2

w2w1α2w1w2α1

-α1-α2

-w1α2-w2α1

-w1w2α1-w2w1α2

Φ2Φ1
-6 -4 -2 2 4 6

-10

-5

5

10



Example 2, the rank 3 Hyperbolic F = AE3

In rank 3 the Weyl group is a hyperbolic triangle group, each
apartment is a copy of the Poincaré disk, P, tessellated into
hyperbolic triangles by W. The boundary of each triangle is a
segment in a hyperbolic geodesic. Along each geodesic segment we
have a S1-family of attached triangles, each in a copy of P, which
is tessellated and has attached disks along each geodesic, on ad
infinitum.
For the rank 3 Hyperbolic F = AE3, the Weyl group
W ∼= PGL(2,Z), and the fundamental domain of its action on each
copy of P is a (2, 3,∞) hyperbolic triangle, giving the tessellation
used by Escher in his famous “Circle Limit IV”.



Circle Limit IV
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Thanks for your kind attention!



Happy Birthday, Hermann!


