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Motivation : • At Planck sole pints one indistinguishable

• one can think in terms of quanta of geometry
in form of spheres or cells .

Aim i Associate geometric invariants with discrete

spaces such 1-hot these reduce in the continuous limit

lp → 0 to - those of differentialgeometry .
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Method : • Imitate lattice gouge theory .

• theplace blocks with cells and assume

that every cat is gel like and bounded
A

by 2d cells

Label each cell with set of integers

n
'
= In

'
, .
. -
nd)

→

• Assume existence of shift operators E, such that

É
, f- 1ns ) = f- In • + SP) is shift operator

along 2 -direction ; f is scalar function
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•
[
a farm a basis in d - dimensional linear space .

• The inverse shift operator is defined by
Iit f- 1ns ) - f Ine - SP)

• Assume É acts first with more left operators :

6TH Éj ' Ivy flu ) = Ej' In -11275key = f Ine k - Is )

• The d- tangent operator ex In) are definedby

eilnl-E-G.tn ) - Ei
'
Ins)
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Inspired by. Dirac operator , we associate with every cell a

Euclidean d- dimensional treat) tangent space Éa with

inner product tea
,

= Sab a
,

b = 1
,
-
d

Inner product invariant under rotation

Ñaln = RE In)e% RTR =

ten
are linear combination of £

E. IN =
e-at Heim ⇒ Ein ) = ein ein)
↓
inverse of e4 (n)
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We can guess the correct Dirac operator from latticegauge

theory :

{ { ÷ 4+14821%+1a)- ✗ In - H)
Ealn ) ✗ In) - EI'm ✗ In)

Spinors Y Int transform under local rotations

✗ IN → Rly ✗ (n)
when Rtn ) = exp (¥ñ%) Vas)

makes So (d) local

Analogue of spin connection :



let Palm = Nah ] Fsln ) when Nath -_ exp / l^wjYmJab )

bln)→ RH rank 'H⇒ Rahl → Rlnln.MN/n+H

Thus Dirac action becomes :

[ [ ÷ 4th ) 8%) (Aln ) - ribs )Y1n) Un)↓ density
8%7=21 ya

In analogy with carton structure equations :

T
"

= dei + Was neb

Ñb= dwab + WE nw
-

b



We define :

J*pln)=#Rly eplnlri
'

In ) - eplnil - acts

Rapti =¥ ( rain % In) Kiki ri'm - ⇔)

= ¥ thats)%ln+DÑ1nfDhj4n ) - 2s)

Raph]
'

transform covariant.bg

For D= 2
, 3,4 Rap /n ) =

"
1h7 Fed

curvature Scolari Rln ) = Eatin Eton) Rna%)



Hermit ; city requirement IY
,
DX) = CD? Y)

⇒ IIYDY)=i§Nn) 4*14 Eden) (Bcn)- rith)Mn)

⇒ V /n) -e-✗ In) % In ) = ✓In> b) chats) Ernst)

must be satisfied .

Easily show that as lato , Iipm → Tas"

Rap" In) → Rnib

Rap In] = jeep (exp /{Kwak ) ) exp/ { Push -121/ expfjlhhln-ppexpfzkq.im
- * e)

→
☐ & Wp - Dpw a + t.cwa.ws ] toll)
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-

2- dimensions

group Soul : Clifford algebra 81--1 ! ;), k= / °
, ;)

generators : Wu = .tw/ihVab-- { Wat c- = / !
,
!)

Nalini ,hz) = eÉ%t = Cos { Waln ,, he / + C- Sint walks,hz)

For est In) : e ;
' /n' in)=ei(n'in ) = ecni, ny

we have 2-torsion conditions for 2 unknowns :

Wilniny wicn
',n7

e f n'el , NZ) sin Wi Int, n' ) - een ' , n'
'

+ 1) ↳ wicn ',nY + e. In',nY=o
Clint -11 , h2 ) cos Wi In ',nY g- ein

'

,
n 't /) sinwilntnY-ecnsn.IO



Solution :

wiin.it ¥ - are "fe":¥¥¥;%¥¥'")
viii. "+ ÷

,

- an" f ""¥:÷¥%÷,")
Rii
"

In) = 2 sin ( { CD
,Wz In

'

,
n' I - Dz W, K 's HY)

RIM = 2 e- iÑeÉ In ) Ri i'%) = 2 e-%) Rii "(n)

1

A numerical study shows that this discretization is an

excellent approximation .
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a discretized sphere approaches the numerical value two.
In section three, the values of the spin-connections and the
curvature tensor in the discrete case will be compared to those
obtained in the continuous case.
In section four, we consider another discretization of the met-
ric where one of the coordinates is ignorable where we show
that a larger number of cells is needed to have the same accu-
racy as the first case.

2 Isotropic coordinates for two-sphere

Consider the two-sphere metric given by:

ds2 = a2
(
dθ2 + sin2 θdφ2

)
(1)

and define:

r = 2 tan
θ

2
, 0 ≤ θ ≤ π

2

r = 2 cot
θ

2
,

π

2
≤ θ ≤ π

to get the two covering for the sphere. We then have:

ds2 = a2

(
1 + 1

4r
2
)2

(
dr2 + r2dφ2

)

= a2

(
1 + 1

4

(
x2 + y2

))2

(
dx2 + dy2

)
,

where

x = r cos φ, y = r sin φ.

To transform this continuous metric to that on the lattice, we
let:

x = 2n1

N
, y = 2n2

N
,

where

n1 = 0,±1,±2, . . . ,± (N − 1) ,

n2 = 0,±1,±2, . . . ,± (N − 1) ,

implying that:

0 < r2 = 4
(
n2

1 + n2
2

)

N 2 ≤ 4

with the maximal value r = 2 attained for θ = π
2 .

In order to plot the set of discrete points making the
discrete space, we will express the Cartesian coordinates

Fig. 1 Two-sphere of radius one formed from the set of the discrete
points

(x1, x2, x3) in terms of n1 and n2 to plot the discrete sur-
face:

x1 = a sin θ cos φ, x2 = a sin θ cos φ, x3 = a cos θ

Substituting

x = 2n1

N
= 2 tan

θ

2
cos φ, y = 2n2

N
= 2 tan

θ

2
sin φ

we can solve for the sine and cosine of θ and φ. This gives
finally:

x1 = a

N

2n1

1 + (
n2

1 + n2
2

)
/N 2

, x2 = a

N

2n2

1 + (
n2

1 + n2
2

)
/N 2

,

x3 = a
1 − (

n2
1 + n2

2

)
/N 2

1 + (
n2

1 + n2
2

)
/N 2

which describes the upper hemisphere. We can obtain the
lower hemisphere by reflection with respect to the xy plane.
Figure 1 displays the set of discrete points, forming a two-
sphere of radius one.

To find the expression of the scalar curvature, we start with
the zweibein that are given by

e1
1 = e2

2 = e (n1, n2) = a
1

1 + 1
N2

(
n2

1 + n2
2

)
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Then, using Eq. (54) in [3], we can find that sin
(

π
4 − ω1 (n1,

n2)) is equal to

1

2
√

2

⎛
⎝

(
1

1 + 1
N2

(
(n1 + 1)2 + n2

2

)
)2

−
(

1

1 + 1
N2

(
n2

1 + (n2 + 1)2)
)2

+2

(
1

1 + 1
N2

(
n2

1 + n2
2

)
)2

⎞
⎠ ·

×
(

1 + 1

N 2

(
(n1 + 1)2 + n2

2

)) (
1 + 1

N 2

(
n2

1 + n2
2

))

(2)

while − cos
(

π
4 − ω2 (n1, n2)

)
is equal to

1

2
√

2

⎛
⎝

(
1

1 + 1
N2

(
n2

1 + (n2 + 1)2)
)2

−
(

1

1 + 1
N2

(
(n1 + 1)2 + n2

2

)
)2

+2

(
1

1 + 1
N2

(
n2

1 + n2
2

)
)2

⎞
⎠ ·

×
(

1 + 1

N 2

(
n2

1 + (n2 + 1)2
)) (

1 + 1

N 2

(
n2

1 + n2
2

))

(3)

Using Eqs. (55) and (56) appearing in [3], the curvature tensor
is then given by

R12 = 2

(
N

2

)2

sin

(
1

2
((ω2 (n1 + 1, n2) − ω2 (n1, n2))

− (ω1 (n1, n2 + 1) − ω1 (n1, n2)))) (4)

and thus the curvature scalar

R = 2
(
e1

1e
2
2

)−1
R12

= 2

a2

(
1 + 1

N 2

(
n2

1 + n2
2

))2

R12 (5)

The scalar curvature as given by Eq. (5) was computed
numerically for several values of N . Figure 2 shows a plot
(radius a = 1) of the mean of the scalar curvature as N
varies between 2 and 40. As N goes beyond 20, the limit to
the continuous case, R = 2

a2 , is established.

Upon discretizing the space, we use 4N 2 vertices on the
lattice subject to the constraint (n1

2 + n2
2 ≤ N 2), where the

Fig. 2 Mean of the scalar curvature versus N for a = 1

Fig. 3 The estimate of the number of points used in evaluating R,
3N 2, is represented by the light green curve. The actual number of
points satisfying Eq. (6), retrieved numerically, and contributing to the
computation of R, is represented by the blue dots

point (0, 0) is at the pole, and the points satisfying (n1
2 +

n2
2 = N 2) are at the equator. However, the number of points

entering in the computation of the spin connections (given
in terms of the zweibein at the lattice point (n + 1)) and the
curvature tensor (found in terms of ω(n+ 1)) is constrained.
The constraint is given by:

(n1 + 2)2 + n2
2 < N 2 & n1

2 + (n2 + 2)2 < N 2 (6)

The constraint satisfying points as well as their estimates are
shown in Fig. 3 as a function of N .

The last point to be discussed in this section is the Euler
characteristic [7]. This is given by [8]:

χ = 1

2π

∫
R 12

.
1

.
2

(n) dxdy

123



To get continues limit , consider a line with length L

divided into N pieces end with length E = ¥ than

✗
2
= and → ✗ = LI

continuous limit achieved when ~→ a b- get finite ×

then n→• such thot ✗ → ✗
☐

s Lng ire 1- = ¥

e. y.es/xj--tElEalH-EI'lxI)fH)--fH+-q--fH-EDealxJ-I*
Density H1n1 satisfy V14 e-%) Rain)= ✓lmk) Nats ) e-

"

Inda)

continues limit : ✓In)→ det ein) .



Conning 1- we have achieved a formulation of discrete gravity
based on rotational in tangent space b- every cell,

2- Failinn of LiÉbnitz rule for differences equation
is avoided by considering shifts of soldering forms
satisfying torsion -free condition

3- Definition of curvature gives manifest continuous

limit those of differential geometry .

4- In future aim to apply formulation to gumhi
of geometry present in Noncommutative geometry
and to cosmology of expanding universe .
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