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neurons.

A technique by which a computer

can “learn” from data, without
Deep Learning:
machine learning

using a complex set of different
rules. This approach is mainly
based on training a model from

Machine Learning
datasets.
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Classification Object Detection Instance

Classification

+ Localization Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK
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Single object Multiple objects

[Image from: https://medium.com/zylapp/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852]
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Real Neuron

Artificial neuron:
1. Input layer Dendrites
2. Hidden layer(s) Artificial Neuron
3. Output layer
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[Image from: https://towardsdatascience.com/why-is-mathematics-vital-to-thrive-in-your-ai-career-c11bd8446ddc]
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Geometric Deep Learning

What to do if the data is curved?

What to do if the data has symmetries?

© Encyclopaesdia Britannica, Inc.



Geometric Deep Learning

Self-driving cars

Climate and weather data




Geometric Deep Learning

But also connections to mathematics:

Deep learning on manifolds  [Cohen et al] b
Sheaf neural networks [Bronstein et al]
Graph neural networks [LeCun et al]
And physics:
Lattice gauge theories [Favoni et all

Supergravity and string vacua [He et al|[Berman, Fischbacher et al]

Topological phases of matter [in progress]



Convolutional Neural Networks

“Convolutional networks are simply neural networks that use convolution in place of
general matrix multiplication in at least one of their layers.”

[Goodfellow, Bengio, Courville]

50009




Image recognition using CNNs

Detection using only vertically oriented edges. Enormous efficiency
Improvement compared to matrix multiplication.

[Goodfellow, Bengio, Courville]



Mathematical structure

For each layer we have a feature map:

f:2?—R*



Mathematical structure

For each layer we have a feature map: no. of channels

e
f:72 5 R®
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2 pixel coordinate
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Kernel (filter): @D : Z2 — RK

Convolution: |f * ¢|(x Z ka )k (x —

yeZ? k=1
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[Figure from machinelearninguru.com]
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Kernel (filter): @D : Z2 — RK

Convolution: |f * ¢|(x Z ka )k (x —

yeZ? k=1

Translation map: |1(t) f|(x) = f(x + t)



Kernel (filter): @D : Z2 — RK

Convolution: |f * ¢|(x Z ka )k (x —

yeZ? k=1

Translation map: |1(t) f|(x) = f(x + t)

Convolution is equivariant

L(t) [l =T@)Lf x|



Convolution is equivariant

L(t) [l =T@)Lf =]

But what about more general symmetries?



Group equivariant CNNs: General framework
(7 agroup. H C (G subgroup.
Coset space: (& / H Vector space: |/ =~ [R™

Representation: p : H — GL(V)



Group equivariant CNNs: General framework
(7 agroup. H C (G subgroup.
Coset space: (& / H Vector space: |/ =~ [R™

Representation: p : H — GL(V)

Now consider: P=(GxV)/H

This is an equivalence class with respect to

(g,v) ~ (gh, p(h~")v)



This is a vector bundle:

Locally, it takes the form: G /H X V
Sections of PP are maps: S G/H — P (p 0S5 = Id)

Locally, we can think of these as functions f : (7 / H—V
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Feature maps are sections! f : ZQ — ]RK



Locally, we can think of these as functions f (G / H—V

Example: G = Z° H = {1} V =R"

Feature maps are sections! f : Z2 — RK

General structure of group equivariant CNNs:

Layers defined with group-equivariant convolutions:

= l(g /Gka )Yi(gh)dh

k=1
[Kondor, Trivedi][Cohen, Geiger, Weiler]



Sectionsof P — (G / H belong to the induced representation:

F=TIndSp={f:G—V|f(gh)=p(h~")f(g)}
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{ Maps between layers }

(G — equivariant linear maps
in the CNN

between feature spaces F — F’



Sectionsof P — (G / H belong to the induced representation:

F=TIndSp={f:G—V|f(gh)=p(h~")f(g)}

12

{ Maps between layers }

(G — equivariant linear maps
in the CNN

between feature spaces F — F’

Homg(]:, f/)

(intertwining operators)
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Example: Spherical signals

By Gerken, Carlsson, Linander, Ohlsson, Petersson, D.P.

[arXiv: 2202.03990]
G = SO(3)
H = SO(2)

Feature f : SQ N RK

maps

Relevant for : (h:*f)(R) _ /Sz K(R—lx)f(x) dz

Omnidirectional vision

Weather and climate data

Cosmology & astrophysics (kx f)(R) = / k(ST'R)f(S)dS
SO(3)
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Equivariance versus Augmentation for Spherical Images

JAN E. GERKEN!, OSCAR CARLSSON!, HAMPUS LINANDER?, FREDRIK OHLSSONS3,
CHRISTOFFER PETERSSON!* AND DANIEL PERSSON!

Abstract

We analyze the role of rotational equivariance in
convolutional neural networks (CNNs) applied to
spherical images. We compare the performance of
the group equivariant networks known as S2CNNs
and standard non-equivariant CNNs trained with
an increasing amount of data augmentation. The
chosen architectures can be considered baseline ref-
erences for the respective design paradigms. Our
models are trained and evaluated on single or multi-
ple items from the MNIST or FashionMNIST dataset
projected onto the sphere. For the task of image clas-
sification, which is inherently rotationally invariant,
we find that by considerably increasing the amount
of data augmentation and the size of the networks,
it is possible for the standard CNNs to reach at least
the same performance as the equivariant network.
In contrast, for the inherently equivariant task of se-
mantic segmentation, the non-equivariant networks
are consistently outperformed by the equivariant
networks with significantly fewer parameters. We
also analyze and compare the inference latency and
training times of the different networks, enabling
detailed tradeoff considerations between equivariant
architectures and data augmentation for practical
problems. The equivariant spherical networks used
in the experiments will be made available at https:
//github.com/JanEGerken/sem_seg_s2cnn.

FIGURE 1.1. Sample from the spherical MNIST
dataset used for semantic segmentation. Left: input
data. Right: segmentation mask.
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Work in progress: Equivariant neural networks for autonomous driving
-1

w/ Gerken, Carlsson, Aronsson, Linander, Ohlsson, Petersson, D.P.
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[Image from the dataset Woodscape, projected onto the sphere]
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[Cheng, Anagiannis, Weiler, de Haan, Cohen, Welling]
[Gerken, Carlsson, Aronsson, Linander, Ohlsson, Petersson, D.P,]
covariance w. r. t.

gauge transformations
(general coordinate transformations)

CNNs on arbitrary manifolds
require local equivariance

Fields
Sections of vector bundles
(frame bundles)

gauge equivariant
feature maps

irreducible representations of (&

elementary particles
(scalars, vectors, spinors...)

elementary feature types”
?

Are these the seeds of a deeper relation between neural networks and gauge theory?



Outlook

-> Is renormalization a universal principle for deep learning?

-> Relation with Quantum Information Theory?

-> Can we realize a neural network as a (quantum) dynamical system?

-> Relation with optimal transport theory and information geometry?

-> Can we implement symmetries and conservation laws?

-> A spacetime perspective of Deep Neural Networks?

=) Emergent phenomena?



* El() - equivariant neural networks?

* Use deep learning to calculate
root multiplicities in /1 ?




* E10 - equivariant neural networks?

* Use deep learning to calculate
root multiplicities in /1(?



