

HermannFest

QUANTUM GRAVITY PHENOMENOLOGY FROM THE THERMODYNAMICS OF SPACETIME

Ana Alonso-Serrano

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)

Work in collaboration with: Marek Liška (Charles University of Prague)

JHEP 12 (2020) 196, PRD 102 (2020) 104056, PRD 104 (2021) 084043, Int. J. Geom. Methods Mod. Phys. 2022, Universe 8 (2022) 50, PRD 106 (2022) 064024

MOTIVATION

- Understand the interface between gravitational dynamics and thermodynamics: One step further
- Role of entropies and connection among them
- On the search for quantum gravity...
 - Quantum phenomenological models to get insight into possible effects
- Look at the entropy: Quantum modifications of entropy
 - Same qualitative behavior in all the models
- Could we obtain phenomenological modified equations of motion from it?
 - General phenomenological quantum gravity dynamics
 - Quantum cosmology: Resolution of the singularity?

OUTLINE

- Einstein equations from thermodynamics: Basic concepts
- Modified entropy
- Quantum phenomenological equations of motion
- > Interpretation of the modified dynamics and application to cosmology
- Discussion
- Further perspectives

EINSTEIN EQUATIONS FROM THERMODYNAMICS

 \succ Gravitational dynamics — \blacktriangleright equilibrium condition for maximal entropy $\delta S = 0$

Quantum correlations across horizon + matter-energy crossing it

- ► Entanglement entropy: $S = \eta \mathcal{A}$ → Bekenstein entropy $S_{BH} = \frac{k_B \mathcal{A}}{4l_P^2}$
- Entropy of matter: in terms of entanglement for GLCD explicitly evaluated for small perturbations from vacuum

Clausius entropy: Equal to leading order for conformal fields (without gravitational dynamics)

Einstein equations are derived — Unimodular gravity

[T. Jabobson, PRL 116 (2016) 20, 201101]

- Unimodular gravity: Restricting full diffeomorphism invariance of GR
 - Local energy conservation must be assumed separately
 - Λ appears as an integration constant
 - Only conformally invariant part couples to gravity > conformal invariance
 - GR and UG same classical dynamics
 - Introduction of quantum effects could indicate which theory is obtained
- Equivalences of entropy
 - Same result interchangeable at semiclassical level
 - Is this general?

GEODESIC LOCAL CAUSAL DIAMONDS

- > In an arbitrary P choose any unit timelike vector n^{μ} and construct Riemann normal coordinates (RNC)
 - Metric expansion around P

$$g_{\mu\nu}(x) = \eta_{\mu\nu} - \frac{1}{3} R_{\mu\alpha\nu\beta} \left(P\right) x^{\alpha} x^{\beta} + O\left(x^3\right)$$

Area of the 2-sphere

$$\mathcal{A} = 4\pi l^2 - \frac{4\pi}{9} l^4 G_{00} \left(P \right) + O\left(l^5 \right)$$

- Spacetime region causally determined by this ball is called geodesic local causal diamond (GLCD)
- Conformal Killing vector conformal Killing horizon

MODIFIED ENTANGLEMENT ENTROPY

Leading order quantum gravity modifications to Bekenstein entropy

$$S_{BH,q} = \frac{k_B \mathcal{A}}{4l_P^2} + \mathcal{C}k_B \ln\left(\frac{\mathcal{A}}{\mathcal{A}_0}\right) + O\left(\frac{k_B l_P^2}{\mathcal{A}}\right)$$

- Predicted by different theories of quantum gravity and phenomenological approaches
- Calculations entanglement entropy —> local causal horizons

QUANTUM PHENOMENOLOGICAL EQUATIONS OF MOTION

EQUATIONS OF MOTION FROM ENTANGLEMENT EQUILIBRIUM

[T. Jabobson, PRL 116 (2016) 20, 201101]

Maximal vacuum entanglement hypothesis (MVEH):

"When the geometry and quantum fields are simultaneously varied from maximal symmetry, the entanglement entropy in a small geodesic ball is maximal at fixed volume"

Consider the GLCD carried out in a maximally symmetric spacetime (MSS), and we simultaneously vary geometry and state of quantum fields:

$$\delta S_e + \delta S_m = 0$$

• On one side: δS_e with the logarithmic correction

$$S_{e,q} = \eta \mathcal{A} + k_B \mathcal{C} \ln \frac{\mathcal{A}}{\mathcal{A}_0} + O\left(\frac{k_B l_P^2}{\mathcal{A}}\right)$$
$$\delta \mathcal{A}|_V$$
$$\delta S_{e,q} = S_{e,q} - S_{e,q}^{MSS} = \eta \delta \mathcal{A} + k_B \mathcal{C} \frac{\delta \mathcal{A}}{\mathcal{A}_{MSS}} - k_B \frac{\mathcal{C}}{2} \left(\frac{\delta \mathcal{A}}{\mathcal{A}_{MSS}}\right)^2 + O\left((\delta \mathcal{A})^3\right)$$

- On the other side: δS_m
 - Conformal Killing vector **Conformal Killing horizon with** T_{Unruh}
 - Quantum fields in the thermal state Minkowski vacuum (EEP)
 - Variation of entropy of quantum fields (Temperatures cancel out)

$$\delta S_m = \frac{2\pi k_B c}{\hbar} \frac{4\pi}{15} l^4 \left(\delta \langle T_{00} \rangle + \delta X \right) - 4\psi l^2 C^2 \frac{2\pi k_B l_P^2}{\hbar c^3} \frac{4\pi}{15} l^4 \left(\delta \langle T_{00} \rangle + \delta X \right) + O\left(l^5\right)$$

 \succ Considering the MVEH: $\delta S_{e,q} + \delta S_m = 0$

Requirement of recovering Einstein equations for $C \rightarrow 0$ fixes $\eta = k_B/4l_P^2$ (SEP)

 $\Rightarrow \begin{cases} \text{Due to EEP} \Rightarrow \text{ every spacetime point } P \\ \\ \text{GLCD in } P \Rightarrow \text{ any arbitrary unit timelike vector } n^{\mu} \end{cases}$

• We obtain:

$$S_{\mu\nu}(P) n^{\mu}n^{\nu} + \frac{Cl_{Pl}^{2}}{30\pi}S_{\alpha\beta}(P) n^{\alpha}n^{\beta}S_{\mu\nu}(P) n^{\mu}n^{\nu} - \Phi(P) = \frac{8\pi G}{c^{4}}\delta\langle T_{\mu\nu}(P)\rangle(P) n^{\mu}n^{\nu}$$

with: $S_{\mu\nu} = R_{\mu\nu} - Rg_{\mu\nu}/4$

We differentiate respect to n^{μ} getting a system of conditions — $\blacktriangleright \Phi$

Finally we obtain:

$$S_{\mu\nu} - \frac{Cl_{Pl}^2}{30\pi} S_{\mu\lambda} S_{\ \nu}^{\lambda} - \frac{8\pi G}{c^4} \delta \langle T_{\mu\nu} \rangle = -^{(0)} \Phi g_{\mu\nu}$$

Taking the trace
$$S_{\mu\nu} - \frac{Cl_{Pl}^2}{30\pi} S_{\mu\lambda} S_{\ \nu}^{\lambda} + \frac{Cl_{Pl}^2}{120\pi} \left(R_{\kappa\lambda} R^{\kappa\lambda} - \frac{1}{4} R^2 \right) g_{\mu\nu} = \frac{8\pi G}{c^4} \left(\delta \langle T_{\mu\nu} \rangle - \frac{1}{4} \delta \langle T \rangle g_{\mu\nu} \right)$$

(Classically Einstein equations recovered by imposing: $T_{\mu \ ;\nu}^{\ \nu}=0$ \longrightarrow Λ)

EQUATIONS OF MOTION FROM CLAUSIUS ENTROPY

> For arbitrary spacelike cross-section S of an arbitrary null surface in a curved spacetime, the Clausius entropy can be defined as:

[V. Baccetti, M. Visser, CQG 31(2014) 035009]

$$\frac{\mathrm{d}S_C(t)}{\mathrm{d}t} = \frac{2\pi k_B c}{\hbar} t \int_{\mathcal{S}(t)} T_{\mu\nu} \left(x\left(t,\theta,\phi\right) \right) k_{\pm}^{\mu} k_{\pm}^{\nu} \mathrm{d}^2 \mathcal{A} + O\left(l^4\right) + O\left(\psi \frac{l_P^2 a^2}{c^4}\right) + O\left(\frac{1}{a^2}\right)$$

Quantum modifications — > new construction of Clausius entropy

 \succ We focus on the specific case of GLCD

 \succ Clausius entropy: δS_m

$$\Delta S_C = S_C(A_f) - S_C(\mathcal{B}) = -\frac{8\pi^2 k_B l^4}{9\hbar c} \left(T_{00}(P) + \frac{1}{4}T(P) \right) + O\left(l^5\right) + O\left(\psi \frac{l_P^2 a^2}{c^4}\right) + O\left(\frac{1}{a^2}\right) +$$

Equivalence between Clausius and entanglement entropy

The entanglement entropy

$$\Delta S_{e,q} = -4\pi\eta l^2 + \frac{4\pi\eta l^4}{9}G_{00}\left(P\right) - k_B \mathcal{C} \ln\left(\frac{4\pi\eta l^2 - \frac{4\pi\eta l^4}{9}G_{00}\left(P\right)}{\mathcal{A}_0}\right) + O\left(l^5\right)$$

Substract "equilibrium state contribution": A MSS

Balance equation (assuming equivalence of entropies):

$$\Delta S_e - \Delta S_{e\,MSS} + \Delta S_C = 0$$

The entropy balance equation yields to a similar expression than previous procedure, and finally we obtain

$$S_{\mu\nu} - \frac{\mathcal{C}l_P^2}{18\pi} S_{\mu\lambda} S^{\lambda}_{\ \nu} + \frac{\mathcal{C}l_P^2}{72\pi} \left(R_{\kappa\lambda} R^{\kappa\lambda} - \frac{1}{4} R^2 \right) g_{\mu\nu} = \frac{8\pi G}{c^4} \left(T_{\mu\nu} - \frac{1}{4} T g_{\mu\nu} \right)$$

INTERPRETATION OF THE EQUATIONS

$$S_{\mu\nu} - D l_P^2 S_{\mu\lambda} S_{\nu}^{\lambda} + \frac{D l_P^2}{4} \left(R_{\kappa\lambda} R^{\kappa\lambda} - \frac{1}{4} R^2 \right) g_{\mu\nu} = \frac{8\pi G}{c^4} \left(T_{\mu\nu} - \frac{1}{4} T g_{\mu\nu} \right)$$

- Equivalence of the derivations Equivalence of entropies?
- Traceless equations Unimodular Gravity
- General equations
- Nonlinear in second derivatives
- Consistency checks
- Diffeomorphism invariance?
- Equivalence principles and Lorentz invariance?

SKETCH OF A COSMOLOGICAL MODEL

Consider a homogeneous, isotropic cosmological model (FLRW model) (k=0) $ds^{2} = -c^{2}dt^{2} + a(t)^{2} (dr^{2} + r^{2}d\Omega^{2})$ Universe filled with dust Raychaudhuri equation: $\dot{H} = -4\pi G \rho \left(1 - 4\pi D \frac{\rho}{\rho_P}\right)$ Energy conservation Friedmann equation: $H^2 = \frac{8\pi G\rho}{3} \left(1 - \frac{2\pi D\rho}{\rho_P}\right) + \tilde{\Lambda}$

• *D*>0 Avoid singularity (similar to bounce in LQC)

DISCUSSION

- One step further in thermodynamics of spacetime
 - Equivalence of entropies
 - Unimodular Gravity
- > Introducing quantum gravity effects via logarithmic corrections to entropy
 - General quantum phenomenological dynamics
 - Effects in a cosmological model

FUTURE PERSPECTIVES

- Understanding the issues of energy conservation and diffeomorphism invariance, equivalence principles, etc...
- Could we find the action which implies the equations of motion?
- Constraints on parameter D
- Equivalence of entropies and appearance of Unimodular Gravity
- Study of explicit solutions
- Noether charge formalism

```
[A A-S, L. J. Garay, M. Liška, PRD 106 (2022) 064024, 2204.08245 [gr-qc]]
```

Happy birthday, Hermann: