Publications of the Quantum Gravity and Unified Theories Division

Journal Article (1118)

  1. 1101.
    Nicolai, H.: A possible constructive approach to (super-φ3)4 (I). Euclidean formulation of the model. Nuclear Physics B 140 (2), pp. 294 - 300 (1978)
  2. 1102.
    Nicolai, H.: An inequality for fermion-systems. Communications in Mathematical Physics 59 (1), pp. 71 - 78 (1978)
  3. 1103.
    Nicolai, H.: Extensions of supersymmetric spin systems. Journal of Physics A 10 (12), pp. 2143 - 2151 (1977)
  4. 1104.
    Nicolai, H.: Supersymmetry and spin systems. Journal of Physics A 9 (9), pp. 1497 - 1506 (1976)
  5. 1105.
    Alday, L. F.; Arutyunov, G.; Frolov, S.: Strings on AdS5x S5.
  6. 1106.
    Anabalon, A.: Liouville theory as a gauge theory.
  7. 1107.
    Flori, C.: Semiclassical analysis of the Loop Quantum Gravity volume operator: Area Coherent States.
  8. 1108.
    Flori, C.; Thiemann, T.: Semiclassical analysis of the Loop Quantum Gravity volume operator: I. Flux Coherent States.
  9. 1109.
    Georgiou, G.; Khoze, V.V.; Kovacs, S.: Probing beta-deformed backgrounds with instantons.
  10. 1110.
    Ghoshal, D.: Quantum Extended Arithmetic Veneziano Amplitude.
  11. 1111.
    Helling, R.: Beyond Eikonal Scattering in M(atrix)-Theory.
  12. 1112.
    Käppeli, J.; Theisen, S.; Vanhove, P.: A note on topological amplitudes in hybrid string theory.
  13. 1113.
    Punzi, R.; Schuller, F. P.; Wohlfarth, M. N. R.: Light clocks in strong gravitational fields.
  14. 1114.
    Sever, A.; Vieira, P.: Symmetries of the N=4 SYM S-matrix.
  15. 1115.
    Thiemann, T.: Solving the Problem of Time in General Relativity and Cosmology with Phantoms and k -- Essence.
  16. 1116.
    Varela, O.: Lifshitz geometries in M-Theory.
  17. 1117.
    de Haro, S.; Hahn, A.: A Path Integral Derivation of Turaevs Shadow Invariant.
  18. 1118.
    de Haro, S.; Torrielli, A.: q-Deformed 2d Yang-Mills and Turaevs Shadow Invariant.

Book (3)

  1. 1119.
    Fleig, P.; Gustafsson, H. P. A.; Kleinschmidt, A.; Persson, D.: Eisenstein series and automorphic representations with applications in string theory. (2018), 584 pp.
  2. 1120.
    Hamber, H. W.: Quantum gravitation: the Feynman path integral approach. Springer, Berlin [u.a.] (2008), 342 pp.
 
Go to Editor View
loading content