Publikationen des Albert-Einstein-Instituts in Potsdam-Golm

Zeitschriftenartikel (7)

  1. 1.
    Bordemann, M.; Hoppe, J.; Theisen, S.: Integrable field theories from Poisson algebras. Physics Letters B 267 (3), S. 374 - 376 (1991)
  2. 2.
    Ecker, K.; Huisken, G.: Interior estimates for hypersurfaces moving by mean-curvarture. Inventiones Mathematicae 105 (1), S. 547 - 569 (1991)
  3. 3.
    Ehlers, J.: Stochastische Herleitung relativistischer Aussagen? Physik und Didaktik 1, S. 70 - 71 (1991)
  4. 4.
    Hoppe, J.; Theisen, S.: Integrable three-body systems with distinct two-body forces. Letters in Mathematical Physics 22 (3), S. 229 - 234 (1991)
  5. 5.
    Hübner, P.; Ehlers, J.: Inflation in curved model universes with noncritical density. Classical and Quantum Gravity 8 (2), S. 333 - 346 (1991)
  6. 6.
    Ibanez, L.; Lerche, W.; Lüst, D.; Theisen, S.: Some considerations about the stringy Higgs effect. Nuclear Physics B 352 (2), S. 435 - 450 (1991)
  7. 7.
    Nicolai, H.: The canonical structure of maximally extended supergravity in three dimensions. Nuclear Physics B 353 (2), S. 493 - 518 (1991)

Buchkapitel (4)

  1. 8.
    Ehlers, J.: The Newtonian limit of general relativity. In: Classical Mechanics and Relativity: Relationship and consistency, S. 95 - 106 (Hg. Ferrarese, G.). Napoli-Bibliopolis, Napoli, Italy (1991)
  2. 9.
    Ehlers, J.: Remarks on the Relation between machian ideas and general relativity. In: Ernst Mach and the Development of Physics, S. 83 - 89 (Hg. Prosser, V.; Folta, J.). Universitas Carolina Pragensis, Prague, Czechia (1991)
  3. 10.
    Nicolai, H.: Two-dimensional gravities and supergravities as integrable systems. In: Recent Aspects of Quantum Fields, S. 231 - 273. Springer, Berlin, Heidelberg (1991)
  4. 11.
    Schutz, B. F.: Data Processing, analysis, and storage for interferometric antennas. In: The Detection of Gravitational Waves, S. 406 - 451 (Hg. Blair, D. G.). Cambridge University Press, Cambridge (1991)

Konferenzband (2)

  1. 12.
    Workshop on theoretical and numerical aspects of geometric variational problems (Proceedings of the Centre for Mathematics and its Applications, 26). Theoretical and numerical aspects of geometric variatonal problems, Canberra, Australien, 24. September 1990 - 28. September 1990. Australian National University, Canberra, Australian (1991), 270 S.
  2. 13.
    Singularity formation in geometric evolution equations (Proceedings of the Centre for Mathematics and its Applications, 26). Workshop on Theoretical and Numerical Aspects of Geometric Variational Problems, Canberra, Australien, 24. September 1990 - 28. September 1990. Centre for Mathematics and its Applications (CMA), Canberra (1991)
 
loading content