Publications of the Geometric Analysis and Gravitation Division

Journal Article (32)

  1. 21.
    Noundjeu, P.; Noutchegueme, N.; Rendall, A. D.: Existence of initial data satisfying the constraints for the spherically symmetric Einstein-Vlasov-Maxwell system. Journal of Mathematical Physics 45 (2), pp. 668 - 676 (2004)
  2. 22.
    Peeters, K.; Plefka, J.; Zamaklar, M.: Splitting spinning strings in AdS/CFT. Journal of High Energy Physics JHEP 2004 (11), 054 (2004)
  3. 23.
    Rendall, A. D.: Fuchsian methods and spacetime singularities. Classical and Quantum Gravity 21, pp. S295 - S304 (2004)
  4. 24.
    Rendall, A. D.: Asymptotics of solutions of the Einstein equations with positive cosmological constant. Annales Henri Poincare 5 (6), pp. 1041 - 1064 (2004)
  5. 25.
    Rendall, A. D.: Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound. Classical and Quantum Gravity 21, pp. 2445 - 2454 (2004)
  6. 26.
    Ringström, H.: On a wave map equation arising in general relativity. Communications in Pure and Applied Mathematics 57 (5), pp. 657 - 703 (2004)
  7. 27.
    Ringström, H.: On Gowdy vacuum spacetimes. Mathematical Proceedings of the Cambridge Philosophical Society 136 (2), pp. 485 - 512 (2004)
  8. 28.
    Ringström, H.: Asymptotic expansions close to the singularity in Gowdy spacetimes. Classical and Quantum Gravity 21, pp. S305 - S322 (2004)
  9. 29.
    Schnetter, E.; Hawley, S. H.; Hawke, I.: Evolutions in 3D numerical relativity using fixed mesh refinement. Classical and Quantum Gravity 21 (6), pp. 1465 - 1488 (2004)
  10. 30.
    Tanimoto, M.: Scalar fields on SL(2,R) and H2 x R geometric spacetimes and linear perturbations. Classical and Quantum Gravity 21, pp. 5355 - 5374 (2004)
  11. 31.
    Tegankong, D.; Noutchegueme, N.; Rendall, A. D.: Local existence and continuation criteria for solutions of the Einstein-Vlasov-scalar field system with surface symmetry. Journal of Hyperbolic Differential Equations 1, 691 (2004)
  12. 32.
    Valiente-Kroon, J. A.: A new class of obstructions to the smoothness of null infinity. Communications in Mathematical Physics 244, pp. 133 - 156 (2004)

Book Chapter (1)

  1. 33.
    Friedrich, H.: Smoothness at null infinity and structure of initial data. In: The Einstein Equations and the Large Scale Behaviour of Gravitational Fields, pp. 121 - 203 (Eds. Chrusciel, P. T.; Friedrich, H.). Birkhaeuser, Bostaton, Basel, Berlin (2004)

Conference Paper (1)

  1. 34.
    Lechner, C.; Alic, D.; Husa, S.: From Tensor Equations to Numerical Code -- Computer Algebra Tools for Numerical Relativity. In: Symbolic and numeric algorithms for scientific computation: SYNASC04, 6th international symposium, Timişoara, Romania, September 26 - 30, 2004 ; proceedings. International Symposium on Symbolic and Numeric Algorithms for Scientific Computation. SYNASC, 6 , Timişoara, September 26, 2004 - September 30, 2004. (2004)
 
loading content