Publications of the Geometric Analysis and Gravitation Division

Journal Article (592)

  1. 1.
    Aksteiner, S.; Bäckdahl, T.: All local gauge invariants for perturbations of the Kerr spacetime. Physical Review Letters 121, 051104 (2018)
  2. 2.
    Friedrich, H.: Peeling or not peeling-is that the question ? Classical and quantum gravity 35 (8), 083001 (2018)
  3. 3.
    Maliborski, M.; Rinne, O.: Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system. Physical Review D 97, 044053 (2018)
  4. 4.
    Mars, M.; Paganini, C.; Oancea, M. A.: The fingerprints of black holes-shadows and their degeneracies. Classical and quantum gravity 35 (2), 025005 (2018)
  5. 5.
    Paganini, C.; Oancea, M. A.: Smoothness of the future and past trapped sets in Kerr-Newman-Taub-NUT spacetimes. Classical and Quantum Gravity 35 (6), 067001 (2018)
  6. 6.
    Andersson, L.; Bäckdahl, T.; Blue, P.: A new tensorial conservation law for Maxwell fields on the Kerr background. Journal of Differential Geometry 105 (2), pp. 163 - 176 (2017)
  7. 7.
    Biernat, P.; Bizon, P.; Maliborski, M.: Threshold for blowup for equivariant wave maps in higher dimensions. Nonlinearity 30 (4), pp. 1513 - 1522 (2017)
  8. 8.
    Bizon, P.; Craps, B.; Evnin, O.; Hunik, D.; Luyten, V.; Maliborski, M.: Conformal flow on S3 and weak field integrability in AdS4. Communications in Mathematical Physics 353 (3), pp. 1179 - 1199 (2017)
  9. 9.
    Doulis, G.; Frauendiener, J.: Global simulations of Minkowski spacetime including spacelike infinity. Physical Review D 95, 024035 (2017)
  10. 10.
    Friedrich, H.: Sharp asymptotics for Einstein-lambda-dust flows. Communications in Mathematical Physics 350 (2), pp. 803 - 844 (2017)
  11. 11.
    Roumi, F. A.; Buchert, T.; Wiegand, A.: Lagrangian theory of structure formation in relativistic cosmology. IV. Lagrangian approach to gravitational waves. Physical Review D 96, 123538 (2017)
  12. 12.
    Aksteiner, S.; Andersson, L.; Bäckdahl, T.: New identities for linearized gravity on the Kerr spacetime. (submitted)
  13. 13.
    Andersson, L.; Bäckdahl, T.; Blue, P.: Decay of solutions to the Maxwell equation on the Schwarzschild background. Classical and Quantum Gravity 33 (8), 085010 (2016)
  14. 14.
    Andersson, L.; Oliynyk, T. A.; Schmidt, B. G.: Dynamical compact elastic bodies in general relativity. Archive for Rational Mechanics and Analysis 220 (2), pp. 849 - 887 (2016)
  15. 15.
    Baake, O.; Rinne, O.: Superradiance of a charged scalar field coupled to the Einstein-Maxwell equations. Physical Review D 94, 124016 (2016)
  16. 16.
    Dafermos, M.; Rendall, A. D.: Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter. Communications on Pure and Applied Mathematics 69 (5), pp. 815 - 908 (2016)
  17. 17.
    Doulis, G.; Rinne, O.: Numerical construction of initial data for Einstein's equations with static extension to space-like infinity. Classical and Quantum Gravity 33 (7), 075014 (2016)
  18. 18.
    Lindblom, L.; Taylor, N. W.; Rinne, O.: Constructing Reference Metrics on Multicube Representations of Arbitrary Manifolds. Journal of Computational Physics 313, pp. 31 - 56 (2016)
  19. 19.
    Rosales, L.: A Holder Estimate for Entire Solutions to the Two-Valued Minimal Surface Equation. Proceedings of the American Mathematical Society 144 , pp. 1209 - 1221 (2016)
  20. 20.
    Rupflin, M.; Topping, P. M.: Flowing maps to minimal surfaces. American Journal of Mathematics 138 (4), pp. 1095 - 1115 (2016)
 
Go to Editor View
loading content