Publikationen der Abteilung Geometrische Analysis und Gravitation

Zeitschriftenartikel (12)

  1. 1.
    Berger, B. K.; Chrusciel, P. T.; Isenberg, J.; Moncrief, V.: Global Foliations of Vacuum Spacetimes withT2Isometry. Annals of Physics 260 (1), S. 117 - 148 (1997)
  2. 2.
    Bicak, J.; Podolsky, J.: Global structure of Robinson-Trautman radiative space-times with cosmological constant. Physical Review D 55 (4), S. 1985 - 1993 (1997)
  3. 3.
    Buchert, T.; Ehlers, J.: Averaging inhomogeneous Newtonian cosmologies. Astronomy and Astrophysics 320 (1), S. 1 - 7 (1997)
  4. 4.
    Ehlers, J.; Buchert, T.: Newtonian Cosmology in Lagrangian Formulation: Foundations and Perturbation Theory. General Relativity and Gravitation 29 (6), S. 733 - 764 (1997)
  5. 5.
    Ehlers, J.; Rindler, W.: Local and Global Light Bending in Einstein's and Other Gravitational Theories. General Relativity and Gravitation 29 (4), S. 519 - 529 (1997)
  6. 6.
    Ehlers, J.: Examples of Newtonian limits of relativistic spacetimes. Classical and Quantum Gravity 14 (1A), S. A119 - A126 (1997)
  7. 7.
    Ehlers, J.: 80 Years of General Relativity. Reviews in Modern Astronomy 10, S. 91 - 100 (1997)
  8. 8.
    Ehlers, J.: Der Kosmos als Objekt der Naturforschung. Nova Acta Leopoldina 303 (76), S. 139 - 147 (1997)
  9. 9.
    Huisken, G.; Ilmanen, T.: The Riemannian Penrose inequality. International Mathematics Research Notices 20, S. 1045 - 1058 (1997)
  10. 10.
    Krivan, W.; Laguna, P.; Papadopoulos, P.; Andersson, N.: Dynamics of perturbations of rotating black holes. Physical Review D 56 (6), S. 3395 - 3404 (1997)
  11. 11.
    Rendall, A. D.: Existence of constant mean curvature foliations in spacetimes with two-dimensional local symmetry. Communications in Mathematical Physics 189 (1), S. 145 - 164 (1997)
  12. 12.
    Rendall, A. D.: Global dynamics of the mixmaster model. Classical and Quantum Gravity 14 (8), S. 2341 - 2356 (1997)

Buchkapitel (8)

  1. 13.
    Ehlers, J.: Concepts of time in Classical Physics. In: Time, Temporality, Now: experiencing time and concepts of time in an interdisciplinary perspective, S. 191 - 200 (Hg. Atmanspacher, H.; Ruhnau, E.). Springer, Berlin, Germany (1997)
  2. 14.
    Huisken, G.: An evolution of metrics by the Ricci curvature. In: Tsing Hua Lectures on Geometry and Analysis, S. 137 - 143 (Hg. Yau, S.-T.). International Press of Boston Inc, Boston, MA (1997)
  3. 15.
    Huisken, G.: An evolution equation for the isoperimetric problem. In: Tsing Hua Lectures on Geometry and Analysis, S. 131 - 136 (Hg. Yau, S.-T.). International Press of Boston Inc, Boston, MA (1997)
  4. 16.
    Huisken, G.: Singularities of the meancurvature flow. In: Tsing Hua Lectures on Geometry and Analysis, S. 125 - 130 (Hg. Yau, S.-T.). International Press of Boston Inc, Boston, MA (1997)
  5. 17.
    Huisken, G.: Mean curvature evolution of closed hypersurfaces. In: Tsing Hua Lectures on Geometry and Analysis, S. 117 - 123 (Hg. Yau, S.-T.). International Press of Boston Inc, Boston, MA (1997)
  6. 18.
    Junker, W.: Application of Microlocal Analysis to the Theory of Quantum Fields Interacting with a Gravitational Field. In: Differential Equations, Asymptotic Analysis, and Mathematical Physics, S. 174 - 180 (Hg. Demuth, M.; Schulze, B.-W.). Akademie-Verlag GmbH, Berlin (1997)
  7. 19.
    Rendall, A. D.: Solutions of the Einstein Equations with Matter. In: Proceedings of the 14th International Conference on General Relativity and Gravitation: Florence, Italy, 6-12 August 1995, S. 313 - 335 (Hg. Francaviglia, M.; Longhi, G.; Lusanna, L.; Sorace, E.). World Scientific (1997)
  8. 20.
    Rendall, A. D.: An introduction to the Einstein-Vlasov system. In: Mathematics of Gravitation: Part I: Lorentzian Geometry and Einstein Equatations, S. 35 - 68 (Hg. Chrusciel, P. T.). Polish Academy of Sciences, Institute of Mathematics, Warszawa (1997)
 
loading content